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CHAPTER 1 

GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation is made up of ten chapters. The first chapter deals 

with general introduction and a statement of the purpose of the project. The 

second chapter is dedicated to the synthesis of three new 

proazaphosphatranes, while the third chapter describes a modified synthesis 

of intermediates leading to the proazaphosphatrane P(/-PrNCH2CH2)3N. 

Subsequent chapters focus on applications of proazaphosphatranes in 

organic synthesis, namely in the synthesis of glutaronitriles, P-hydroxy 

nitriles, P-nitroalkanols, E-ajP-unsaturated esters and oxazolidines, as well 

as Michael addition reactions of alcohols, nitroalkanes and imines derived 

from a-amino esters. The last chapter contains general conclusions and a 

prospective outlook for the chemistry of proazaphosphatranes. Each of the 

chapters that describe research, are either papers published or papers still in 

progress, except for Chapter 3 which discloses a discovery to be submitted 

as a Record of Invention to Iowa State University Research Foundation 

(ISURF). 
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Introduction and Statement of the Project 

Proazaphosphatranes (1) constitute a class of compounds that is 

emerging as useful bases for important organic transformations. The strong 

basicity of these compounds has been attributed to their ability to form a 

transannular bond leading to the highly stable five-membered 

azaphosphatrane ring systems 2. 

The first proazaphosphatrane P(MeNCH2CH2)3N (la) was 

synthesized in our group by Lensink et al. in 1989.^ Following its 

synthesis, this compound was found to be a very strong base with a pK^ of 

about 26.8 in THF based on competitive deprotonation." However, the pK^ 

value extrapolated for acetonitrile (41.6) appears to be questionable and 

will be revisited in Chapter 2 of this dissertation. The proazaphosphatrane 

la was also found to be a very efficient catalyst for the trimerization of 

isocyanates.^ Results of experiments carried out so far suggest that la has a 

pK^ value higher than that of proton sponge (4) and consequently a much 

stronger base than either DBU (5) or TMG (6), which are conmionly used 
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nonionic organic bases. The ability of la to equilibrate with P4-r-Bu (7) 

was taken as an indication that this base has a pK^ value close to that of P4-

r-Bu/ However, the current study (Chapter 2) concludes that this 

observation was erroneous. 

NHo NHo 
NH N 
X (Me2N)3R=N-^N=P(NMe2)3 

N-V MeaN NMea n 

P(NMe2)3 
6 7 

Several new proazaphosphatranes have been prepared over the last 

decade. Hence, Lensink et al} prepared the benzylic derivative 8 while 

Tang prepared the imidate 9.^ Wroblewski^ and D'Sa^ were able to place 

8 9 

isopropyl groups on the equatorial nitrogens to form proazaphosphatranes 

lb and 3, respectively, which were also found to be strong bases. With the 

preparation of these new bases by our group, the list of reactions 

catalyzed/promoted by proazaphosphatranes grew. D'Sa found that these 

compounds could fiinction as superior catalysts for the silylation® and 
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acylation^ of alcohols. An elegant use of proazaphosphatranes discovered 

by D'Sa et al. was the direct synthesis of a,P-unsaturated nitriles.'® With 

these results, the proazaphosphatranes caught the attention of other 

researchers," '" including Yamamoto, who was able to prepare the first Cj 

symmetric derivative (10) of these compounds.'^ Yamamoto's effort was 

followed by those Liu et al. who successfully prepared a second Cj 

symmteric analogue (11) that has been found to be an efficient reagent for 

the determination of enantiomeric excesses of chiral azides.'"* Ilankumaran 

has found that the proazaphosphatranes can be used as efficient catalysts for 

transesterification reactions.'^ Studies by Arumugam and McLeod revealed 

that proazaphosphatranes can be used for dehydrohalogenations that 

afforded alkenes in excellent yields.'^ In a recent study, D'Sa observed that 

these bases promote the most efficient synthesis of benzofurans reported to 

date.'^ He also found that these compounds are capable of isomerizing 

methylene-intemipted double bonds.'® 

10 11 12 
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Work by Wang has resulted in the preparation of a novel ylide'^ 12 

from the proazaphosphatrane la in addition to using the same 

proazaphosphatrane as a base for Wittig reactions of aldehydes."® 

Furthermore, Wang et al. have been able to prepare homoallylic alcohols 

from aldehydes and CH^iCHCH^SiMej in a reaction catalyzed by 

P(i-PrNCH2CH2)3N.^' In other studies, Wang was able to prepare a-

cyanohydrins^^ and to induce the reduction of carbonyl compounds with 

PHMS in the presence of P(MeNCH2CH2)3N.-^ 

These results show that proazaphosphatranes do offer advantageous 

alternatives to conventional methodologies. The current study was initiated 

in an attempt to develop further uses for proazaphosphatranes as reagents 

and catalysts in organic synthesis. The focus of this study was to identify 

reactions in which these bases offer improved methodologies. Since the 

commercially available base P(MeNCH2CH2)3N synthesized by our group is 

expensive ($238.00/g), we also decided to seek a preparation of analogous 

bases that could be made more easily at a lower price. 
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CHAPTER 2 

SYNTHESIS OF NEW PROAZAPHOSPHATRANES AND THEIR 

APPLICATION IN ORGANIC SYNTHESIS 

A paper to be submitted to Tetrahedron 

Philip B. Kisanga'^'' and John G. Verkade'"' 

Abstract 

We report herein the synthesis of the new strong bases P(RNCH2CH2)3N 

(R= MejCCH., Me^CHCH,) and P(HNCH2CH3)2NCH2CH.NCHMe2. The new 

azaphosphatranes [HP(RNCH2CH2)3N]C1 (R= Me3CCH2, Me2CHCH2) have P-

distances of 2.047 and 1.958 A, respectively. We also report the synthesis 

of the tetramine precursor to the latter proazaphosphatrane (namely, 

(H2NCH2CH2)2NCH2CH2NHCHMe2) in a remarkable yield and the use of a 

novel separation technique to separate it from a mixmre with the di- and tri-

isopropyl subsituted analogues. 

Introduction 

The nonionic superbases la,' lb,"and first synthesized in our 

laboratories, have been found to be efficient catalysts and promoters for many 

" Graduate student and University Professor, respectively. Department of Chemistry, Iowa State University. 
" Primary researcher and author. Author for correspondence. 
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reactions. Thus, these proazaphosphatranes can catalyze the trimerization of 

isocyanates,"* the dehydrohalogenaiion of alkyl halides,^ the synthesis of a,P-

1 c R = Piv 
Id R = /so-Bu 
1e R = Et 

unsaturated nitriles,® P-hydroxy nitriles,^ and homoallylic alcohols,® the 

transesterification of esters,' the deprotection of acylated alcohols'®® and 

silylated alcohols,the synthesis of P-nitroalkanols,'' the synthesis of a,a-

dicyano-a,3-olefins,'^ Michael addition reactions,'^ the silylation of hindered 

alcohols , ' "*  the conjugat ion of  methylene-intemipted double  bonds, the 

synthesis of glutaronitriles,'^ the synthesis of benzofiirans,'^ and the synthesis of 

oxazolidines.'® We have also been able to utilize these bases stoichiometrically 

in other syntheses, such as the Wittig products," Stille coupling products,^® a,P-

unsaturated esters^' and oxazoles."* Compound la (available from Strem 

Chemicals) has been extensively studied and found to be superior to other 

nonionic bases, such as DBU and proton sponge.^ 
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Recent studies with la, lb, and If suggests that these bases have slighdy 

different basicities.^ "^ Furthermore, we have found that lb is superior to la in 

a number of reactions as a result of its higher basicity and better stability with 

respect to oligomerization/'®*^' It is imperative that new homologous 

proazaphosphatranes be synthesized in order to facilitate studies aimed at 

understanding the effect of the PN3 nitrogen substituents on the basicity and 

catalytic properties of this class of compounds. More economical and 

convenient syntheses of such trisubsituted proazaphosphatranes are also 

important to investigate, because in our experience, trisubstituted bases are 

more stable to oligomerization than the less substituted analogues. 

We have previously attempted to use acetaldehyde for the synthesis of 

N(CH2CH2NHEt)3 (the precursor to le) through the reduction of the 

intermediate fm-aldimine formed with N(CH2CH2NH2)3 (2).* However, 

oligomerization of the intermediate aldimine was faster than its reduction and 

consequently, the tetramine N(CH2CH2NHEt)3 had to be prepared by a less 

convenient procedure.^'* This was achieved by reacting N(CH2CH2NH2)3 (2) 

with acetic anhydride followed by reducing the rns-amide thus produced with 

lithium aluminum hydride. Although the fm-aldimine derived from 

acetaldehyde proved to be unsuitable, we believed that higher aldehydes might 
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lead to fm-aldimines that are less prone to oligomerization because of steric 

hindrance. We therefore decided to investigate the reaction of pivalaldehyde 

(3a) and isobutyraldehyde (3b) with 2 and we report herein the synthesis of 

proazaphosphatranes Ic and Id, respectively, derived firom these aldehydes. 

We have previously reported the synthesis of the proazaphosphatrane lb~ 

and its less substituted analogue If.- Preliminary results have also indicated 

that Ih is more basic than la, although the pure base could not be isolated.^ 

We thus tentatively concluded that if we could prepare proazaphosphatrane Ig, 

it might exceed la, lb and If in basicity. 

Synthesis of NCCHjCHjNHCHjCMej), (4a), [HP(Me3CCH2NCH2CH2)3N]Cl 

(5a) and P(Me3CCH2NCH2CH2)3N (Ic) 

The preparation of 4a was achieved by stirring a 1:4 mixture of 2 and 

pivalaldehyde for 1 hour and then reducing the intermediate aldimine with 

Results and Discussion 

Scheme 1 
1. 3(RCHO)4.0equiv. 1h 

2. NaBH4/MeOH 1 h 
3. SOVoNaOH 

CIP(NMe2)2 

' 0 °C, then RT 
2 

3a R z MS3C 
3b RsMezCH 

99.7% 4a RsMeaC 
97.0% 4b RsMe2CH 

89% Sa RsMeaC 
96% 5b R s Me2CH 

^BuOK 

96% 1e 
97 % Id 
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sodium borohydride in methanol. The excess borohydride was quenched with 

50% sodium hydroxide to afford 4a in 99.7% yield (Scheme 1). This synthesis 

of 4a is more convenient than that recently reported by Scheer et al. (who 

provided no physical data for the pure tetramine).-® The Scheer synthesis was 

carried out by reacting the tetramine 2 with pivaloyl anhydride followed by the 

reduction of the triamide thus produced with lithium aluminum anhydride. 

When the amount of pivalaldehyde in Scheme 1 was reduced to 3.0 equiv, 

conversion to 4a decreased to 51% owing to the formation of 43% of the less 

substituted derivative 4c (Scheme 2). The tetramine 4a is not appreciably 

soluble in acetonitrile and as a result, the hydrochloride 5a was successfully 

prepared in a solvent system composed of methylene chloride and ethyl ether in 

89% yield (Scheme 1) and then deprotonated in THF to afford Ic in 71% yield. 

The use of methylene chloride alone led to inconsistent results, while ether 

failed to induce a clean reaction. Although the reaction was successful in THF, 

the product thus obtained could not be purified. 

The weak acid 5a displayed a ^'P signal at 2.29 ppm, which is 

significantly downfield (by -12 ppm) compared with that of the commonly 

Scheme 2 
1. MesCCHO 3.0 equiv, 1 h 

2. NaBH^/MeOH, 2h 
3. 50%NaOH 

4a 51% 

H 

4c 43% 
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aa 
cna am 

cn7) 

oai 
cno 

CMIi 'Of 

xa 

Figure 1. Molecular structure of 5a. Ellipsoids are drawn at the 50% 

probability level 

used trisubstituted analogues laH^ and However, X-ray crystallography 

(Figure 1) showed that the P-N„ distance (2.047 A) was within experimental 

error (i.e. within 3 x esds) of those found in other analogues [laH"^ (1.967 A), 

IbH" (1.946 A), (2.078 A) reported previously from our laboratories." 

The N^PN^ angles of 118-119 ° are also comparable to those of the other 

analogues reported previously.^ The proazaphosphatrane base Ic displayed a 

NMR signal at 144.3 ppm in QD^, which upon addition of two drops of 

nitromethane rapidly disappeared and was replaced by a single ^^P signal at 2.29 

ppm. This experiment demonstrates that the new proazaphosphatrane has a pK^ 

value of at least 28 in acetonitrile, since the pK^ of nitromethane in CHjCN is 

28 27a strong basicity of this proazaphosphatrane was confirmed by the 

ability of its conjugate acid 5a to equilibrate with Pj-Et in acetonitrile upon 
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standing at room temperature for I h in an experiment monitered in a flame-

sealed tube by NMR analysis (equation 1). In the presence of 10 mol % of 

Cr(acac)3 as a relaxagent, this reaction afforded an equilibrium mixture that 

could be analyzed accurately by ^'P NMR spectroscopy to afford a pK^ of 32.84 

R —L-I I 
N N 

N Mezr^-P-NMez (Me2N)3P=N-P-N=P{NMe2)3 wegN-P-NMea 
w NMea 
P(NMe2)3 P(NMe2)3 

Pa-Et R = Et Pi-f-Bu 
Pz-r-Bu R = f-Bu PA-t-Bu 
P2-Oct R = n-Oct 

Pz-Et + . Pa-EtH* + 1 (1) 

in CH3CN for the conjugate acid 5a based on the pK^ of Pj-Et phosphazene 

base reported by Schwesinger et al}'"" The pK^ values (average of at least two 

measurements) similarly obtained for la through Ig (except le, which has not 

yet been found to be synthetically useful) in CH3CN are shown in Table 1. It is 

worth mentioning that these pK^ values (32.90 - 34.49) are substantially lower 

(by ~ 8 pKa units) than we estimated previously.-^'' In that report, P4-f-Bu, the 

only phosphazene base commercially available at that time was used in a 

manner analogous to that described in equation 1. However, for reasons that 

are not clear, an apparent equilibrium was observed in an experiment utilizing 

an equimolar amount of each of Pj-r-Bu and laH"^. In a repetition of that 

experiment, we have found that a solution of P4-f-Bu in THF completely 
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deprotonates an equimolar amount of either laH"^ or IdH"^ (5b) in less than 10 

min. On the other hand, P,-r-Bu was unable to deprotonate laH^. Therefore, 

the basicity of proazaphosphatranes is comparable with that of Pt phosphazene 

bases such as P2-Et, Pj-f-Bu and P^-Oct. 

Synthesis of NCCHjCHjNHCHXHMe^a (4b), [HP(Me2CHCH2N-

CH2CH2)3N]CI (5b) and P(Me2CHCHjNCH2CH2)3N (Id) 

The synthesis of 4b was achieved analogously to that of 4a as discussed 

above. Hence 2 was reacted with isobutyraldehyde in a small amount of r-butyl 

alcohol or methanol, followed by reduction with sodium borohydride in 

methanol to afford a 97% yield of 4b after distillation (Scheme 1). When 

isobutyraldehyde was not first dissolved in an alcohol, the isolated yield of 4b 

decreased to 89%. Ring closure to 5b was achieved in acetonitrile in 96% yield 

in a manner analogous to that described for 5a. However, scale-up of the 

reaction led to lower yields as a result of the limited solubility of 4b in this 

solvent. This problem was circumvented upon altering the solvent system to 

methylene chloride or THF. This afforded 87-95% yields of 5b depending on 

the scale of the reaction. The P-N^^ distance in 5b is 1.958 A, which is within 

experimental error (i.e. within 3 x esds) of those reported for laH"^ and IbH"^.' 

The N^qPNgq angle of 119-120 is also close to those reported for the same 
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Cr7AJ 

'COA) 

Figure 2. Molecular structure of 5b. Ellipsoids are drawn at the 50% 

probability level 

analogues.^ However, the NMR chemical shift of -7.1 ppm is shifted 

downfield by over 2 ppm compared to that of the commonly used analogues 

laH"^ and IbH^.^ The molecular structure of 5b shows that it crystallizes to 

form monoclinic crystals in which two molecules crystallize with four solvent 

(CHCI3) molecules. It is worth mentioning that the ring closure reaction was 

unsuccessful in ether. Deprotonation of 5b was achieved using potassium t-

butyl oxide in THF, followed by extraction with pentane, to afford Id in 97% 

yield as a colorless oil that solidifies to form a white solid upon storing at -4 °C 

for 24 h. When solid formation did not occur, the colorless liquid was frozen 

in a dry ice-acetone bath, which was then allowed to warm to —4 °C in the 

freezer to form a white solid that was kept at or below -4 °C. However, Id can 

be used in the liquid form. So far, we have observed no change in either the 
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physical data NMR and NMR spectra) or the chemical properties of Id 

upon storing the compound in either the liquid or solid state for up to 30 days. 

A liquid sample of Id stored at room temperature over the same time-period, 

also showed no change in either the 'H NMR or NMR spectrum. 

Furthermore, a sample of Id left in an open tube for 24 h showed no formation 

of the oxide as occurs with la, lb, and If. The base Id showed a single ^'P 

NMR signal at 130.9 ppm. Upon addition of nitromethane to the solution of 

this compound in CgD^, this peak instantaneously disappeared and was replaced 

by a single peak at -8.2 ppm (5b) which is characteristic of pentacoordinate 

phosphorus. 

Compound Id was thus obtained in three steps in 64 - 90% overall yield. 

The lower limit occurred in large scale synthesis (0.5 mol) in which stirring 

difficulties were encountered. Nevertheless, Id is the least expensive 

proazaphosphatrane we have prepared so far. 

Synthesis of (H2NCH2CH2)2NCH,CH2NHCHMe2, (6) HP(HNCH2CH2)2N-

CHjCHzNCHMe^lCI (7) and [P(HNCH2CH2)2NCH2CH2NCHMe2] (Ig) 

The synthesis of Ig in Scheme 3 (to be discussed shortly) required a 

viable route to tetramine 6. Although syntheses of the more highly subsituted 

analogues 8^ and 9^ in Scheme 4 were reported previously from our 
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laboratories, neither report mentioned the mono-substituted analogue 6, because 

we were unable to observe it in the product mixture. We have recently noted its 

formation in varying amounts during subsequent preparations of both 8 and 9. 

Scheme 3 

A ,N(-

N( 

6 

Scheme 4 

'NH2)2 
CIP(NMe2)2/CH3CN 

0 °C for 0.5 h 
25 °C (or 0.5 h 
35 °C for 2 h 

CI 
f-BuOK 

18 

7% 
78% 7 

1. acetone 

2. NaBH4 
3. 50%NaOH 

N(CH2CH2NH^Pr)3 
8 

6 

N(>. 'N-^2 
H 

Therefore, a study aimed at optimizing the formation of 6 was initiated. 

Compound 6 was obtained as the major product (Scheme 4) by reducing the 

amount of acetone used in the reaction to 3.2 equiv and also reducing the time 

of addition of sodium borohydride to 3 h. However, none of the three products 

could be isolated from the mixture of products by distillation because of the 

proximity of their boiling points. Purification based on the difference in the 

solubility of their sodium iodide complexes was achieved according to Scheme 

5. A mixmre of 6, 8 and 9 was stirred in a 1:1 mixture of hexane and water for 

1 h in the presence of sodium iodide. Separation of the organic layer, followed 

by extraction of the aqueous layer with ether afforded 8, which does not form a 

complex with sodium iodide that is water-insoluble. The aqueous layer was 
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Scheme 5 2.Stir vigorously for 1 h. 
3. Extract 8 times with 100 mL portions of ether. 

. 8 

mixture + Nal 1- 200mLhexane 

g 2x g water 

X: 31 - 73 

4. AIM 0 mL of 50% NaOH solution. 7% 
5. Extract 2 times with 50 mL of ether and discard these extracts. 
6. Add the remaining NaOH solution (3x g in 3x mL of water). 
7. Extract 5 times with 100 mL of water. 

• 9 
8. Extract 2 times with 50 mL of ether and discard these extracts. 19% 
9. Extract 3 times with 100 mL of methylene chloride. 

• 6 
41% 

then treated with 50% aquesous sodium hydroxide to pH 11 to free 9. This 

basic aqueous solution was extracted with ether and dried over anhydrous 

potassium carbonate. The sodium iodide-6 complex remained as an insoluble 

viscous oil above the aqueous layer and was extracted with methylene chloride 

to afford an oily material that was distilled to afford pure 6. 

The conversion of 6 to its hydrochloride 7 was achieved as shown in 

Scheme 3. In this process, 6 was added to ClP(NMe2)2 in acetonitrile at 0 °C. 

The reaction mixture was stirred for 0.5 h at this temperature, followed by 

stirring at room temperature for an additional 0.5 h. The reaction mixmre was 

placed in a warm water bath (35 "C) and stirred for 2 hours. The intermediate 7 

that precipitated was filtered under vacuum and washed with cold acetonitrile to 

afford the pure salt. Alternatively, the reaction mixture was stirred at room 

temperature overnight to afford the hydrochloride salt 7 in comparable yields to 

that described above. Attempted deprotonation of 7 with potassium /-butoxide 

in THF, followed by extraction with pentane, afforded a liquid material with ^'P 
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NMR spectral peaks at 124 and 134 ppm. The two peaks were found to persist 

when MeNO, was added to a solution of the product in and therefore we 

concluded that this material could not be Ig. The second step in Scheme 3 was 

then repeated in benzene. The product isolated exhibited a NMR chemical 

shift at 100.9 ppm in This peak rapidly disappeared on addition of 

MeN02 to a solution of the product with the subsequent appearance of a 

peak at —32.6 ppm, which is characteristic of 7. The peak at 100.9 ppm for the 

mono-isopropyl-substimted Ig (although slightly shifted in the presence of 

MeCN to 101.4 ppm) also agrees favorably with the trend observed for 

disubstituted If and trisubstituted lb, whose NMR chemical shifts are 

1 lO-S^"" and 117" ppm, respectively. 

Compound Ig was very unstable, oligomerizing even at -A °C over 24 h, 

although crude Ig dissolved in benzene and kept in the freezer for up to seven 

days did not oligomerize substantially. We previously observed that If 

oligomerized when kept at room temperature for a week and that it could be 

kept for longer periods of time when kept below —4 °C.^ An attempt at 

preparing the unsubstituted proazaphosphatrane Ih also has remained 

unsuccessful so far due to similar oligomerizations, although it could be 

observed in solution and stable derivatives were isolated.^® The 'H and 
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NMR spectra of Ig were not sufficiently clean to allow elemental analysis 

and/or HRMS. An attempt at redistillation was unsuccessful because of the 

small amount of material in hand. However, the observed purity (93% by 

NMR analysis) was sufficient for NMR characterization. The rest of the 

material, as determied by NMR analysis was the oxide whose presence is 

attributed to adventitious oxygen that readily reacted with Ig. 

Comparison of the catalytic properties of lb, Ic and Id 

Since Id is less expensive than any of the other proazaphosphatrane 

bases we have prepared so far, we selected it for the comparison of its 

efficiency as a catalyst for a number of reactions for which lb has proved to be 

a superior base. We also compared these key reactions for Ic as well. Thus, we 

used both Ic and Id for the synthesis of several ^-hydroxy nitriles, P-

nitroalkanols, a,P-unsaturated esters and for the oxa-Michael addition of allyl 

alcohol to some a,P-unsaturated ketones. Pertinent data for these comparative 

reactions in Table 2 reveal that Id is generally as efficient as lb and more 

efficient in some cases. The most noteworthy of these reactions is the 

preparation of a P-hydroxy nitrile from p-anisaldehyde and acetonitrile in the 

presence of 2.2 equiv of magnesium sulfate. Previously, we found that this 
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reaction proceeds with relatively modest yield (78%) in the presence of lb as 

the catalyst. In the presence of Id, the conversion of p-anisaldehyde to the 

P-hydroxy nitriJe is 96% at 0 °C with relatively higher formation of the a,p-

unsamrated nitrile (14% compared to 4% using lb). However, by reducing the 

reaction temperature to -5 °C, a similar conversion is obtained with only 3% of 

the a,p-unsaturated nitrile being observed by 'H NMR integration with a 

corresponding 91% isolated yield of the P-hydroxy nitrile. Similarly, the P-

hydroxy nitrile from the reaction of p-chlorobenzaldehyde and acetoniirile was 

obtained in a superior yield (88%). Likewise, the preparation of P-hydroxy 

nitriles from 2-methylcyclohexanone and 2-butanone proceeded with superior 

yields. TTie reaction of mesityl oxide and 4-hexen-3-one with allyl alcohols 

provide two other examples in which Id is superior to lb. We have reported 

previously'' a relatively low nitroaldol yield in the reaction of 3-pentanone and 

nitromethane (see also Table 2). We find here that Id affords a much better 

yield (Table 2). Table 2 also show that Ic is not a useful catalyst for the 

synthesis of P-hydroxy nitriles and the synthesis of a,P-unsaturated esters. The 

poor reactivity of Ic in acetonitrile is probably due to its lower basicity in 

addition to its lower solubility in this solvent. However, Ic is highly effective 
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for the addition of allyl alcohol to enones^^ and for the promotion of the Henry 

(nitroaldol) reaction in the presence of magnesium sulfate." 

Experimental Section 

All ring closure and deprotonation reactions were carried out under 

nitrogen. 7'm(2-aminoethyl)aniine (2) was distilled before use. The aldehydes 

(Aldrich) were used as received. The solvents THF, pentane, benzene, 

methylene chloride and acetonitrile were dried according to standard 

procedures.^' and NMR spectra were recorded on a Bruker VRX300 or 

Bniker DRX400 instrument and calibrated using TMS as an intemal standard. 

^'P NMR were recorded on a Bruker DRX400 instrument. The melting and 

boiling points of the products were obtained in sealed tubes under nitrogen and 

are uncorrected. The bases la/ Ibr and If^ were prepared according to 

previously reported methods, although la is conmiercially available (Strem). 

Procedure for the Synthesis of N(CH2CH2NHCH2CMe3)3 (4a) 

To 14.6 g (0.10 mol) of /m(2-aminoethyl)amine (2) in a 500 mL round-

bottomed flask placed in an ice bath was added over 20 min 49 mL of an 80% 

commercially available pivalaldehyde solution in f-butyl alcohol. The mixture 

was allowed to stir at room temperature for I hour after which 1(X) mL of 
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methanol was added. The resulting brownish solution was allowed to cool to 5 

°C and then 11.1 g of powdered sodium borohydride was added portion-wise 

over 1 h at the end of which unreacted sodium borohydride could be seen as a 

white solid. The reaction mixture was quenched by the addition of 60 mL of a 

50% sodium hydroxide solution. At this point, a solid precipitated which was 

dissolved by the addition of 100 mL of water. The reaction mixture was 

extracted with hexane (4x100 mL) and the hexane extracts were combined and 

treated with 50 mL of 1.0 M sodium iodide solution. The hexane layer was 

separated and the aqueous layer was extracted with 3x50 mL of hexane. The 

hexane extracts were combined and then dried over anhydrous potassium 

carbonate. Removal of the volatiles under reduced pressure, followed by 

distillation under vacuum, afforded 34.9 g (99.7%) of a pale product 4a (B.P. 

160 °C / 2 Ton-) that was 'H NMR-pure. 'H NMR (CDCI3): 6 2.64 (t, 6H), 2.48 

(t, 6 H), 2.34 (s, 6 H), 0.99 (s, 27 H),. '^C NMR (CDCI3): 8 63.2, 55.7, 49.9, 

32.3,28.5. HRMS Calcd for QiH.gN, 357.39573. Found m/e (M+H^) 

357.39558. 
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Procedure for the Preparation of a mixture of N(CH2CH2NHCH2CMe3)3 

(4a) and (H2NCHjCH2)2NCH,CH2NHCH2CMe3 (4c) 

To 14.6 g (0.10 mol) of rn5(2-aminoethyl)amine (2) in a 500 mL round-

bottomed flask placed in an ice bath was added 36.0 mL of an 80% 

commercially available pivalaldehyde solution in /-butyl alcohol over 20 min. 

The mixture was allowed to stir for 1 hour after which 100 mL of methanol was 

added. The resulting brownish solution was allowed to cool to 5 °C and then 

9.50 g of powdered sodium borohydride was added portion-wise over 1 h at the 

end of which unreacted sodium borohydride was present as a white solid. The 

reaction mixture was quenched by the addition of 60 mL of a 50% sodium 

hydroxide solution. At this point, a solid precipitated which was dissolved by 

the addition of 100 mL of water and the reaction mixture was extracted with 

ether (4xl00mL). The ether extracts were combined and dried over anhydrous 

potassium carbonate. Removal of the volatiles under reduced pressure afforded 

a mixture of the tide products. The separation of these products was 

accomplished as follows. The product mixmre was dissolved in 50 mL of 

hexane in a 500 mL round-bottomed flask followed by the addition of 50 mL of 

1.00 M solution of Nal. The mixture was stirred for 0.5 h, the organic layer 

was separated and the aqueous layer extracted with 4x100 mL of hexane to 
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above to afford a 51% yield (14.6 g) of the tetramine 4a. The aqueous layer 

was placed in a water bath and 50 mL of 50% sodium hydroxide was added 

slowly (to avoid a strong exotherm) and then the mixture was extracted with 

4x60 mL of ether. The ether extracts were combined and dried over anhydrous 

potassium carbonate. Removal of the volatiles under reduced pressure followed 

by distillation at 140 °C/5C)0 milliTorr afforded 9.31 g (43%) of 4c. 'H NMR 

(CgDg): 5 2.52-2.61 (overlapping region, 6H), 2.40 (t, 2 H), 2.30 (s, 2H), 2.25 (t, 

4 H), 0.96 (s, 9 H). NMR (QD^): 5 63.3, 58.5, 55.3, 49.7, 41.0, 32.2, 28.4. 

Preparation of [HP(Me3CCH,NCH,CH2)3N]Cl (5a) 

To 50.0 mmol of ClP(NMe2)n prepared in situ in 125 mL of methylene 

chloride by the slow addition of 1.5 mL (16.7 mmol) of PCI3 to 6.1 mL (33,3 

mmol) of P(NMe2)3 at 0 °C in an ice bath, was added 17.8 g (50 mmol) of 

N(CH2CH2NHCH2CMe3)3 (4a) dissolved in 50 mL of methylene chloride under 

nitrogen. The flask was equipped with an outlet for the escape of the byproduct 

Me2NH. After addition of 4a, 100 mL of dry ether was added and the reaction 

mixmre was stirred for 48 h at room temperature after which the volatiles were 

removed under reduced pressure. The residue was partitioned between 10 mL 

of water and 50 mL portions of methylene chloride until the methylene chloride 
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extracts afforded no residue. The organic extracts were combined and dried 

over anhydrous magnesium sulfate and then the volatiles were removed under 

reduced pressure to afford an oily material that was dissolved in 30 mL of 

methylene choride. Ether was added until a slight turbidity was seen. The flask 

was then placed in the freezer for at least 2 h. After decantation of the 

supernatant, the white material that precipitate was washed with 2x15 mL of 

ice-cold ether to afford 18.3 g (89%) of 5a. NMR (CDCI3): 6 3.63 (s, 6 H), 

3.26 (t, 6 H), 2.68 (td, 6 H), 0.89 (s, 27 H). NMR (CDCI3): 8 61.1 (d, 7 = 11 

Hz), 48.0 (d, J = 7.4 Hz), 42.2 (d. J = 6.0 Hz), 33.5 (d, J = 3.8 Hz). NMR 

(CDCI3): 5 2.29. 

Procedure for the Preparation of P(Me3CCH2NCH2CH2)3N (Ic) 

To a mixture of 6.77 g (16.1 mmol) of [HP(Me3CCH2NCH2CH2)3N]Cl 

(5a) and 3.60 g (32.2 mmol) of /-BuOK in a Schlenk flask was added 100 mL 

of dry THF under nitrogen. The reaction mixture was stirred for 2 h at room 

temperature after which THF was distilled off under vacuum. Then 150 mL of 

pentane was added to the reaction mixture under nitrogen and stirring was 

continued for one more hour. The reaction mixture was allowed to settle and 

the clear upper layer was vacuum transferred by means of a canula into a 500 

mL Schlenk flask through a fritted glass. Another portion of pentane (100 mL) 
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was added under nitrogen and the mixture stirred for 0.5 h after which the 

whole mixture was transferred by canula onto the fritted glass under nitrogen. 

The mixture was allowed to filter slowly under vacuum. After filtration was 

complete, the solvent was removed under vacuum to afford 4.71 (97% yield) of 

the base Ic as a white solid that was found to be 98% pure by 'H NMR 

spectrospcopy and essentially pure by ""'P NMR spectroscopic analysis. 'H 

NMR (QDe): 5 2.86-2.95 (overlapping region, 18 H), 1.01 (d, 27 H). 

NMR (QDg): 5 66.6 (d, 7 = 43.8 Hz), 51.8 (d, 7 = 1 Hz), 51.2 (d, / = 6.8 Hz), 

34.4 (d, 7 = 2.8 Hz), 28.3 (d, 7 = 2.5 Hz). NMR (QD^): 5 144.3. 

Preparation of NCCHjCHjNHCHXHMej), (4b) 

To 14.6 g (0.1 mol) of fm(2-aminoethyl)amine (2) in a 500 mL round-

bottomed flask was added dropwise. 36 mL (28.8 g, 0.40 mol) of 

isobutyraldehyde dissolved in 10 mL of f-butyl alcohol over 20 minutes. The 

mixture was allowed to stir at room temperature for 1 h after which 100 mL of 

methanol was added. The resulting colorless solution was allowed to cool to 5 

°C in an ice bath and then 11.1 g of powdered sodium borohydride was added 

portion-wise over 1 h at the end of which unreacted sodium borohydride was 

present as a white solid. The reaction mixture was quenched by the addition of 

60 mL of aqueous 50% sodium hydroxide followed by the addition of 100 mL 
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of water to dissolve the precipitated inorganic material. The reaction mixture 

was extracted with 4x100 mL of hexane. The hexane extracts were combined 

and then treated with 50 mL of 1.0 M sodium iodide. The hexane layer was 

separated and then the aqueous layer was washed with 3x50 mL of hexane. The 

hexane extracts were combined and dried over anhydrous potassium carbonate 

and then the volatiles removed under reduced pressure. The crude product was 

distilled under vacuum to afford 30.5 g (97%) of 4b as a pale liquid (B.P. 160 

°C / 2 Ton-). 'H NMR (CDCI3): 5 2.60 (t, 6H), 2.46 (t, 6 H), 2.40 (d, 6 H), 1.72 

(m, 3 H), 1.25 (s, 3H), 0.95 (d, 18 H),. NMR (CDCI3): 6 59.1, 55.2, 48.9, 

29.5, 21.4. HRMS Calcd for C.sH.jN^ 315.34787. Found m/e (M+H"') 

315.34856. 

Procedure for the Preparation of [HP(Me2CHCH2NCH2CH2)3N]Cl (5b) 

To 50 mmol of ClP(NMe2)2 prepared in situ in 125 mL of acetonitrile by 

the slow addition of 1.5 mL (16.7 mmol) of PCI3 to 6.1 mL (33.3 mmol) of 

P(NMe2)3 at 0 °C in an ice bath, was slowly added 15.7 g (50 mmol) of 

tetramine 4b dissolved under nitrogen in 50 mL of acetonitrile. The flask was 

equipped with an outlet for the escape of the byproduct Me^NH. A white 

precipitate was observed to form gradually. After completion of the addition, 

the reaction mixmre was stirred for 2 h at room temperature after which 100 mL 
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of ether was added. Stirring was continued for two additional hours after which 

the volatiles were removed under reduced pressure. The residue was then 

partitioned between 100 niL of acetonitrile and 100 mL of hexane. The hexane 

fraction, upon removal of the volatiles afforded 0.3 g of unreacted 

N(CH3CH2NHCH2CHMe2)3 (4b). The acetonitrile fraction afforded a residue, 

which was dissolved in the least amount of THF and then ether added until no 

more precipitation was observed with further addition of ether (total -150 mL). 

The flask was then placed in the freezer for at least 2 h after which the clear 

layer was decanted from the residue. The residue was washed with 20 mL of 

cold THF and then was dried under vacuum to afford 18.1 g (96% yield) of 

white solid 5b. 'H NMR (CDCIJ: S 0.85 (d, 18 H), 1.83 (septet, 2 H), 2.61 (d, 

6H), 3.10 (t, 6 H), 3.56 (t, 6 H). ''C NMR (CDClj): 6 55.7 (d, /= 12.7), 47.0 

(d, J = 7.8 Hz), 39.6 (d, / = 5.9 Hz). 26.8 (d, J = 4.7 Hz), 20.0 (s). NMR 

(CDCI3): 6-7.1 (s). 

Procedure A for a large scale synthesis of [HP(Me2CHCH2NCH2CH2)3N]Cl 

(5b) 

To 192 mmol of ClP(NMe2)2 prepared in situ in 200 mL of methylene 

chloride by the slow addition of 5.7 mL (64 mmol) of PCI3 to 23.4 mL (128 

mmol) of P(NMe2)3 at 0 °C in an ice bath, was added slowly under nitrogen 



www.manaraa.com

31 

60.0 g (191 mmol) of tetramine 4b dissolved in 150 mL of methylene chloride. 

The flask was equipped with an outlet for the escape of the byproduct Me^NH. 

After completion of the addition, the reaction mixture was stirred for 6 h at 

room temperature after which the reaction mixture was kept in the refrigerator 

overnight. The volatiles were removed in vacuo, the residue was dissolved in 

100 mL of methylene chloride and then water was added slowly until two layers 

were seen. The layers were separated and the aqueous layer was extracted with 

6x50 mL portions of methylene chloride. The organic extracts were combined 

and dried over anhydrous magnesium sulfate, and then the volatiles were 

removed under reduced pressure. The residue was dissolved in the least amount 

of methylene chloride and then precipitated with 200 mL of dry ether. After 

decantation, the residue was dried under vacuum to afford 62.9 g (87% yield) of 

a white product (5b) whose 'H NMR, NMR and NMR spectra were 

identical to those given above. 

Procedure B for a large scale synthesis of [HP(Me2CHCH2NCH2CH2)3NlCl 

(5b) 

To 192 nmiol of ClP(NMe2)2 prepared in situ in 300 mL of THF by the 

slow addition of 5.7 mL (64 mmol) of PCI3 to 23,4 mL (128 mmol) of 

P(NMe2)3 0 °C in an ice bath, was slowly added 60.0 g (191 mmol) of 
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tetramine 4b dissolved in 200 mL of THF under nitrogen. The flask was 

equipped with an outlet for the escape of the byproduct MejNH. After 

completion of the addition, the reaction mixture was stirred for 6 h at room 

temperature after which 200 mL of ethyl ether was added. The reaction mixture 

was then refrigerated overnight. The reaction mixture was then filtered through 

a medium glass flit, the precipitate was washed three times with cold THF and 

then the product was dried under vacuum to afford 53.5 g (74.1%) of compound 

5b. The ^H NMR, NMR and NMR spectra were identical to those given 

above. 

Preparation of P(Me2CHCH2NCH2CH2)3N (Id) 

To a mixture of 13.7 g (136 mmol) of 5b and 8.09 g (72.2 mmol) of 

f-BuOK in a 500 mL Schlenk flask was added under nitrogen 100 mL of dry 

THF. The reaction mixture was stirred for 2 h at room temperature after which 

THF was distilled off under vacuum. Pentane (150 mL) was then added to the 

reaction mixture under nitrogen and stirring was continued for an additional 

hour. The reaction mixture was then allowed to settle and the clear upper layer 

was vacuum transferred by means of a canula into a 500 mL Schlenk flask 

through a glass frit. Another portion of pentane (100 mL) was added under 

nitrogen to the residue in the reaction flask and the mixture stirred for 0.5 h 
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after which it was transferred by canuia into the firitted glass tube under 

nitrogen. After the mixture was allowed to filter slowly under vacuum, the 

solvent was removed under vacuum and the crude base transferred under 

nitrogen by means of a syringe (or pipette) into a 50 mL round-bottomed flask. 

Distillation at 132 °C/ 210 milliTorr afforded 12.0 g (97% yield) of the product 

Id. 'H NMR (QDg): 6 0.93 (d, 18 H), 1.82 (septet, 3 H), 2.75 (overlapping 

region, 12H). NMR (QDJ: 5 59.1 (d), 52.1 (d), 47.2 (d), 29.2 (d), 21.2 

(d). 3'P NMR (QDfi): 6130.9. 

Preparation of a mixture of 6, 8, and 9 

To a solution of 76 g (0.52 mol) of fm(2-aminoethyl)amine (2) and 81.0 

g of anhydrous sodium acetate in 500 mL of water was added 225 mL of glacial 

acetic acid in a 3.0 L three-neck flask. The mixmre was stirred by means of a 

mechanical stirrer at 500 rpm while it cooled to room temperature. The mixture 

was then placed in an ice/salt bath and cooled to 5 °C after which 110 mL (1.67 

mol) of acetone was added over 15 min. The solution was allowed to stir for 5 

minutes and then 55 g (1.50 mol) of powdered sodium borohydride was added 

portion-wise over 3 h and the temperature was kept to 5-10 °C. After 

completion of the addition, the reaction mixture was allowed to stir in the ice 

bath for 30 additional min and then it was quenched with 200 g of sodium 
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hydroxide dissolved in 300 mL of water. Extraction of the mixture with 4x100 

mL of methylene chloride, dr>'ing of the extract over anhydrous potassium 

carbonate and removal of the extract solvent under reduced pressure afforded 

73.1 g of the product mixture. 

Separation of the mixture of 6, 8 and 9 

To the above mixture of 6, 8, and 9 (73.1 g) dissolved in 200 mL of 

hexane in a 1.0 L round-bottomed flask was added 142 g of sodium iodide 

followed by 200 mL of water. The mixture was stirred vigorously for 1 h and 

then extracted with 6x100 mL of ether. After the addition of 10 mL of 50% 

sodium hydroxide solution, two more extracts obtained with 2x50 mL of ether 

were collected and dried over anhydrous potassium carbonate. The volatiles 

were removed under reduced pressure to afford 329 mg of a material that was 

discarded. When these last extracts contained substantial amounts of 8, as 

determined by 'H NMR spectroscopy of the residue, extraction was continued 

until the extracts produced no more residue upon removal of the volatile 

components. The organic layers were then combined, dried over anhydrous 

potassium carbonate and the volatiles removed under reduced pressure to afford 

crude 8 that was distilled at 85-90 °C/200 milliTorr to afford 9.91 g (7% yield) 

of 8. To the aqueous layer was then carefully added (slow addition to avoid an 
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exothermic reaction) 210 g of sodium hydroxide dissolved in 220 mL of water. 

The reaction mixture was allowed to cool to room temperature, and then it was 

extracted with 6x100 mL of ether while making sure that no oily droplets were 

collected with the organic fraction. The ether extracts were combined and dried 

over anhydrous potassium carbonate. The volatiles were removed under 

reduced pressure and the crude product was distilled at 110-120 °C 1250 

milliTorr affording 22.7 g (19% yield) of 9. The aqueous layer remaining at 

this point also displayed the presence of a viscous oily layer which was 

extracted with 3x100 mL of methylene chloride. The extracts were dried over 

anhydrous potassium carbonate followed by removal of the solvent under 

reduced pressure to afford crude 6 that was distilled to afford 40.1 g (41% 

yield) of 6 as a yellowish liquid (B.P. 137 °C/200 milliTorr) that was 98% pure 

by 'H NMR spectroscopy. 'H NMR (QD^): 5 2.89 (septet, 1 H), 2.54 (t, 6 H), 

2.39 (s, 2 H), 2,24 (t, 4 H), 0.98-1.05 (overlapping region, 11 H). NMR 

(QDe): 5 58.4, 55.4, 49.5,46.2, 40.9, 23.8. 

Procedure for the Preparation of [HP(NHCH2CH2)2NCH2CH2NCHMe2]Cl 

(7) 

To 50 nmiol of ClP(NMe2)2 prepared in situ in 100 mL of dry acetonitrile 

by the slow addition of 1.5 mL (16.7 nunol) of PCI3 to 6.1.mL (33.3 nrniol) of 
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P(NMe2)3 at 0 °C in an ice bath, was added under nitrogen 9.40 g (50.0 mmoi) 

of 6 dissolved in 50 mL of acetonitrile. The flask was equipped with an outlet 

for the escape of the byproduct Me^NH. The reaction mixture was stirred for 

0.5 h at 0 °C and then for 0.5 h at room temperature. The reaction flask was 

then placed in a water bath warmed to 35 °C and stirring continued for 2 

additional hours during which a white precipitate was formed. The precipitate 

was filtered by means of a medium glass frit, washed with 2x20 mL portions of 

ice-cold dry acetonitrile and then dried under vacuum to afford 9.96 g (78%) of 

7. 'H NMR (D2O): 5 5.61 (d, 1 H y = 320 Hz), 3.46 (septet, 1 H), 2.96 

(overlapping region, 12 H), 1.00 (d, 6 H). '^C NMR (DjO): 6 49.0 (d, 7 = 11.3 

Hz), 47.7 (d, y = 8.3 Hz), 47.4 (d, 7 = 15.1 Hz), 32.9 (d, 7 = 5.3 Hz), 32.5 (d, 7 = 

2.3 Hz), 20.3 (d, 7= 5.3 Hz). ^'P NMR (D.O): 6 32.7. 

Procedure for the Preparation of Ig 

To a mixture of 6.31 g (25.0 mmol) of 7 and 2.80 g (25.0 mmol) of 

f-BuOK in a 500 mL Schlenk flask, was added under nitrogen 100 mL of dry 

benzene. The reaction mixture was stirred for 2 h at room temperature and then 

it was allowed to stand until separation into two layers occurred. The clear 

upper layer was transferred under vacuum by means of canula into a 500 mL 

Schlenk flask through a glass frit. Another portion of benzene (100 mL) was 
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added to the residue of the reaction mixture and then the mixture was stirred for 

0.5 h after which the mixture was transferred under nitrogen by canula into the 

glass frit and filtered slowly under vacuum. After filtration was completed, the 

solvent was distilled under vacuum and the crude base transferred under 

nitrogen by means of a syringe into a 50 mL round-bottomed flask. Distillation 

at 143 °C/ 200 milliTorr afforded 378 mg (7% yield) of Ig. 'H NMR (C^D^): 6 

2.67 (septet, 1 H), 2.55 (t, 6 H), 2.39 (t, 2 H), 2.24 (t, 4H), 1.23 (d, 6 H), 0.92 

(bs, 2H). NMR (QD^): 6 58.4 (d, 7 = 11.3 Hz), 55.3 (d, 7= 12.1 Hz), 49.5 

(d, J = 2.3 Hz), 46.2 (s), 40.9 (s), 23.9 (d, J = 0.8 Hz). ''P NMR (QD^); 5 

100.9. 

Procedure A for the determination of pK, 

To 100 mg (0.3 mmol) of P^-Et weighed under nitrogen in an NMR tube 

was added 0.30 nmiol of the protonated proazaphosphtrane followed by 0.03 

mmol of the relaxagent Cr(acac)3. The NMR tube was sealed with a rubber 

septum and 0.75 mL of dry CH-CN or CDjCN was added under nitrogen. The 

mbe was then flame-sealed under reduced pressure (< 760 Torr but > 5 Torr) 

and the mixmre was shaken vigorously for 0.3 - 1 h. ^'P NMR integration of 

the signals representing the four species shown in equation 1 afforded their 

molar ratios. The pK^ was then calculated from the derived relationship 
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10-32.94 ^ [Pg.EtH-^[1] 10-32.94 X [i]2 

and the definition pK^ = -logFQ. The NMR integration values were 

substituted for the concentrations of the individual species in the above 

relationship. Because P^-Et is unstable under atmospheric conditions, the pfQ 

value calculated using a fresh sample of the phosphazene base with 5b (33.53) 

was used as secondary reference to check the pK^ values determined for other 

proazaphosphatranes. Unlike P^-Et, la, and If, Id has been found to be stable 

with respect to oligomerization, oxidation and hydrolysis at atmopsheric 

conditions. 

Procedure B for the determination of pK, 

To 103 mg (0.3 mmol) of Id weighed under nitrogen in an NMR tube 

was added 0.30 mmol of the protonated proazaphosphtrane followed by 0.03 

mmol of the relaxagent Cr(acac)3. The NMR tube was sealed with a rubber 

sepmm and 0.75 mL of dry CH3CN or CD3CN was added under nitrogen. The 

mbe was then flame-sealed under reduced pressure (< 760 Ton* but > 5 Torr) 

and the mixture was shaken vigorously for 0.3 - 1 h. ^'P NMR integration of 

the signals representing the four species shown in equation 1 afforded their 

molar ratios. The pK^ was then calculated as shown in A above. 
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Table 1. The pK^ of the conjugate acids of some proazaphosphatranes of 

interest in CH3CN. 

base pK^ in CH3CN base pK^ in CH3CN 

la 32.9 Id 33.53 

lb 33.63 If 33.00 

Ic 32.84 Ig 34.49 
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Table 2. Comparison of the efficiency of lb as a catalyst or promoter versus 

Ic and Id. 

reaction mol % 

irc/h 

% yield 

with Id 

% yield 

with Ic 

% yield 

with lb" 

2-methylcyclohexanone + MeCN 10/25/6'' 93 c 84' 

2-butanone + MeCN 10/25/6^ 96 c 88' 

/7-anisaldehyde + MeCN 30/-5/6'' 91 trace 60' 

/?-chlorobenzaldehyde + MeCN 30/0/6" 89 trace 71' 

3-pentanone + MeNO^ 10/25/3" 76 78 60'' 

benzaldehyde + w-PrNO^ 20/25/2" 96 95 9711 

p-anisaldehyde + CHjCO^Et 30/50/6 91(96) trace 60-' 

p-chlorobenzaldehyde + EtCO^Me 30/50/6 95 trace 95-' 

4-hexen-3-one + CH2:CHCH20H 20/70/3 96 96 71'3 

mesityl oxide+ CH2:CHCH20H 20/70/3 88 81 40'' 

"Obtained from previous reports from our laboratories. ''In the presence of 2.2 

equiv of MgS04. "No detectable amount of product formed. 
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CHAPTER 3 

MODIFIED SYNTHESIS OF INTERMEDIATES LEADING TO 

P(i-PrNCH2CH2)3N 

A discovery to be disclosed to ISURF* in a Record of Invention 

Philip Kisanga'' '^ and John G. Verkade'"' 

The proazaphosphatrane P(/-PrNCH2CH2)3N' is emerging as a strong 

competitor for the commercially available (Strem) analog P(MeNCH2CH2)3N.-

In several reactions, the former compound either promotes a much more cleaner 

reaction or supersedes the latter in both yield and ability to effect the reaction/ 

It is therefore, highly desirable to develop a more convenient, efficient and 

economical synthesis for this compound. 

To this end, we have modified the synthesis of the intermediate 

(/-PrNHCH2CH2)3N and of [HP(/-PrNCH2CH2)3N]Cl which is the precursor to 

P(/-PrNCH2CH2)3N. Furthermore, we have eliminated the use of methylene 

chloride that has been recently classified as a possible health hazard. In our 

method published earlier,' the reaction of 32 g of tren [N(CH2CH2NH2)3] 

required 10 hours of continuous addition of sodium borohydride. Thus, the 

" Iowa State University Research Foundation. 
Gradauate studenbt and University Professor, respectively. Department of Chemistry, lowas State Univeristy. 

" Primary researcher and author 
Author for correspondence 
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time required to run this rather small-scale reaction was inconveniently long 

and hence an impediment in developing a large scale synthesis of P(/-

PrNCH2CH2)3N. In the modified version described here, this reaction is carried 

out on a 96 g (0.66 mol) scale of tren and the time required for attending the 

reaction is about 8 hours although the reaction is run over about 48 hours. The 

amount of sodium borohydride required for the reaction of 96 g of tren using 

our previous method is about 312 g (8.4 mol). With the modification described 

here, the amount of sodium borohydride required is 99 g (2.68 mol) with an 

estimated 67% savings (equivalent to at least $173 based on the Aldrich price) 

on this reactant alone. 

Preparation of (i-PrNHCH2CH2)3N 

In a 3.0 L 3-neck flask provided with a mechanical stirrer and a 

thermometer was added 500 mL of water followed by 96 g (0.66 mol) of tren. 

To this solution was added 86 g of anhydrous fused sodium acetate followed by 

235 ml. of glacial acetic acid (an equimolar amount of NaOAc^HjO could in 

principle also be used). The mixture was stirred at 500 rpm and the temperature 

of the solution was monitored until it reached 20 °C. To this mixture was then 

added (over 20 min) 500 mL of acetone from a freshly opened bottle. The 

solution was allowed to stir for 30 minutes and then it was placed in an ice/salt 
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bath until the temperature of the solution reached 10 °C. To this solution was 

then added 25 g of sodium borohydride portionwise over 1.5 h. The solution 

was then allowed to stir overnight while the temperature of the bath was 

allowed to warm to room temperature slowly. After about 12 h, the ice/salt 

bath was renewed and the addition of sodium borohydride continued. After the 

portionwise addition of a maximum 30 g of sodium borohydride (or until the 

appearance of a solid, which ever comes first), 200 mL of acetone was added 

with continuous stirring. Sometimes some solid appears before completion of 

addition of 30 g of sodium borohydride, the remainder of the 30 g of NaBH4 

was added following the addition of the 200 mL of acetone. This was followed 

by the addition of more 15 g of sodium borohydride over 1 h. After the 

addition was complete (regardless of the appearance of solid), the mixture was 

allowed to stir overnight. Renewal of the ice/salt bath to 10 °C and the addition 

of 15 g of sodium borohydride led to the formation of a small amount of solid if 

a solid had not already appeared. The reaction mixture was allowed to stir for 

30 minutes and then 50 mL of acetone was added whereupon any solid that may 

have been formed disappeared. The mixture was allowed to stir for 15 minutes 

after which an additional 15 g of sodium borohydride was added. Tlie reaction 

mixture was allowed to stir for 30 more minutes and then it was quenched with 
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400 g of a 50% solution of sodium hydroxide. If a solid formed upon 

quenching, the solution was decanted and the residue washed with 3x100 mL of 

ether. The decantate was then extracted with ether (6x200 mL) and dried over 

anhydrous potassium carbonate. The solvent and 2-propanol that had formed 

was removed under vacuum to afford 172 g (0.63 mol, 96%) of 'H NMR-pure 

(/-PrNHCH2CH2)3N. 

Synthesis of [HP(i-PrNCH2CH2)3N]Cl 

To 182 mmol of ClP(NMe2)2 prepared in situ in 175 mL of ether by the 

slow addition of 5.3 mL (61.0 mmol) of PCI3 to 22.0 mL (122 mmol) of 

hexamethylphosphorus amide (P(NMe2)3) at 0 °C in an ice bath, was added 33.1 

g (122 mmol) of (/-PrNHCH2CH2)3N under nitrogen. The flask was equipped 

with an outlet for the escape of the byproduct Me^NH. A white precipitate was 

observed to form immediately. After completion of the addition, the reaction 

mixture was stirred for 12 h at room temperature after which it was filtered and 

then washed with 2x50 mL of ice-cold ether followed by 2x20 mL of ice-cold 

THF. Removal of the THF afforded 39.4 g (96%) of the salt which was 

converted to the title base as reported previously from our laboratories.' 
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CHAPTER 4 

P(RNCH,CH,)3N-CATALYZED a,P-DIMERIZATION OF 

UNSATURATED NITRILES; FORMATION OF 2-ALKYLIDENE-

3-ALKYLGLUTARONITRILES 

A paper published in the Journal of Organic Cheinistr>' 1998, 63. 10057." 

Philip Kisanga,'"' Bosco D'Sa'' and John Verkade'"' 

Abstract 

The title syntheses are efficiently catalyzed by strongly basic pro-

azaphosphatranes of the type P(RNCH2CH2)3N via Michael addition. A 

plausible reaction mechanism is proposed for the formation of the 

glutaronitriles. 

Introduction 

The oligomerization and polymerization of olefins has been of interest to 

researchers for decades. Of specific interest are processes that lead to the 

formation of dimers that can be utilized in copolymerization reactions. Such 

" Reproduced with permission from Journal of Organic Chemistry. Copyright 1999, American Chemical 
Society. 
" Graduate student and University Professor, respectively, Depanment of Chemistry, Iowa State University. 
^ Primary researcher and author. 

Schering-Plough Research Institute, 1011 Morris Avenue, Union, NJ 07083. 
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dimers are often observed as byproducts in Michael addition reactions. 

Among dimer formations unsaturated nitriles are those produced by 

electrolytic processes'" and those catalyzed by transition metal complexes/ ̂  

trialkyl phosphines/isocyanide-copper(I) oxide binary systems'*and bases.' 

Reactions catalyzed by trialkyl phosphines or transition metal complexes 

suffer from the major drawback that they are restricted to the dimerization 

of p-unsubstituted-a,p-unsaturated acrylonitrile and the corresponding 

acrylate. Moreover, the isocyanide-copper(I) system requires a lengthy 

reaction time and a high temperature, and the conversion ratio is 

disappointing. Electrolytic reactions produce glutaronitriles as a minor 

product and are therefore inefficient routes to this class of compounds. 

Reports of the use of bases in the dimerization of nitriles are scanty. The 

report by White" et al. describes a rapid reaction that is catalytic in R^NCN, 

but provides very low to modest yields (15-54%) along with several 

byproducts. Shabtai^ and co-workers reported on the dimerization of 

crotononitrile and allyl cyanide using a catalyst system consisting of 

potassium-benzylpotassium (K/PhCH^K). However, these reactions produce 

the corresponding dimers in apparently very low (unreported) yields along 

with other products including trimers. The method reported by A. Daweal' 
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utilizes a condensation between propionaldehyde and cyanoacetic acid to 

produce 3-ethyl-2-propylideneglutaronitrile in low yield. 

Results and Discussions 

We have shown previously that acetonitrile can be deprotonated by the 

nonionic bases la,'°b" and c^' giving a low concentration'" of the anion 

[CH^CN]. It has also been demonstrated that this anion adds to carbonyl 

compounds to form a,P—unsamrated nitriles'" or P—hydroxynitriles.'"* In the 

formation of a,P-unsaturated nitriles,'^ we reported that aldehydes lacking an 

a-hydrogen (e.g. trimethylacetaldehyde and aromatic aldehydes) react to 

form a,P-unsaturated nitriles,'^ while primary aldehydes form the aldol 

products.'" Here we show that secondary aldehydes in the presence of lb 

afford 2-alkylidene-3-alkylglutaronitriles (2). which are a,P-dimers of the 

a,p-unsaturated nitriles we expected originally. We observed no p,p-dimer 

in our reaction (a product that accompanies the copper(I)oxide-isocyanide 

process"^). Thus commercially available 3-6 are converted to the high yields 

la: R = R = Me 

lb: R = H, R'=/-Pr 

1c: R = R'= APr 

2 
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shown for their corresponding glutaronitriles 7-10, respectively. These 

products are assumed to form via the corresponding a,p-unsaturated nitriles 

(equation 1) which are subsequently deprotonated by lb to from an allylic 

CXun >7' CHO —CHO ^CHO 

CHO 4  ̂ e 
3 ® 

CN CN CN •CN 

CN CN CN •CN 

10 

30 mole % lb 
GH3CN + RR"CHCHO 

CH3CN 40 °C, 2.5 hr 
R" 

anion that can then Michael add to another molecule of the a,P-unsaturated 

nitrile. This process is depicted in Scheme 1. The isomerization of the double 

bond as shown in this scheme is consistent with our previous observation that 

l b  i s  capab le  o f  con juga t ing  me thy lene - in te r rup ted  doub le  bonds . In  

accordance with this finding, we expected lb to be able to produce Michael 

addition products from substrates possessing double bonds poised to conjugate. 

The results of these experiments are shown for substrates 11-16 in Table 1. 

Scheme I further shows that 'CH,CN acts as a base in catalyzing the formation 

of the glutaronitriles. This was proved in reactions in which the substrates 11, 

12 and 13 were reacted separately with 10 mole percent of lb in CD3CN. 

The ^'P NMR of the reaction mixture showed the existence of lb, IbH"^, and 
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Scheme 1 

B = Ibor -CH2CN 

R'V-^N 
R" 

+ B 

-BH* RV-
R" 

CN R\ 
R" 

.CN R-

BH-" 
-B 

R-
B 
-BH-

BH^ 
-B 

N 

CN 

11 

CN 

Q^on 

12 

16 

I T I II r  ̂̂CN 

17 18 19 20 

IbD". The '^C NMR spectrum of the reaction mixture showed the existence of 

CD3CN and a substantial amount of CD^HCN which can be formed only if the 

CD2CN produced by the deprotonation of CD^CN deprotonates the substrate. 

However, reactions in the presence of acetonitrile is slower requiring up to 12 

hours to achieve yields similar to thosse obtained with reactions carried out in 

benzene that requites 1-3 hours only. This is probably because of the solvation 

of the anions in the more polar acetonitrile. 

As shown in this Table 1, both la and lb can function as catalysts for 

Michael addition reactions. Likewise, Ic catalyzes the reaction of 3 and 4 
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with acetonitrile to produce the corresponding glutaronitriles 7 and 8 in 

and 93% (estimated by 'H NMR integration) respectively in 2.5 hours. As 

postulated in Scheme 1, the y- rather than the a-hydrogen is deprotonated at 

the a,P-unsaturated nitriie stage of these Michael additions. This assumption 

receives support from the lack of reaction in Table 1 of substrates 14 and 16 

which lack a y-hydrogen. Substrate 15'^ on the other hand produces the dimer 

in excellent yield. The reaction of the methylene interrupted unsaturated 

nitriie 12 in the presence of catalytic amounts of la or lb produces the dimer 

19 in 90% yield in addition to the isomerized monomer 20 in 10% yield. 

Evidence for the isomerization of the P,Y-unsaturated glutaronitrile produced 

in the penultimate step of Scheme 1 to the more stable final a,P-unsaturated 

isomeric product is therefore provided by product 19. The failure of product 

19 to undergo conjugation may be due to the sterically hindered environment 

of the a-hydrogen owing to the presence of the two six-membered rings. The 

formation of compound 19 also serves as evidence for the postulated reaction 

pathway shown in Scheme 1. The isolation of product 20 on the other hand 

supports our previous findings that lb is capable of isomerizing double bonds. 

In a similar way, the production of the glutaronitriles 17 and 18 from the 

substrates 11 and 13 respectively using la or Ic as bases indicate that they 

(la and Ic) are capable of isomerizing double bonds. 
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Although further experiments along the above lines are underway, we 

have thus far recovered only starting materials in attempted dimerizations of 

methylene interrupted P,Y-unsaturated esters or ketones. Diphenyl 

acetaldehyde and 2-phenylpronionaldehyde have so far also failed to give the 

glutaronitriles under the reaction conditions above in which secondary 

aldehydes are used. Primary aldehydes undergo aldol condensation as we 

previously reported.'^ 

Experimental Section 

The aldehydes and nitriles (from Aldrich Chemical Company) were used as 

o 

received. Acetonitrile was distilled from calcium hydride and stored over 4A 

molecular sieves. All reactions were carried out under nitrogen. 

General procedure for the preparation of glutaronitriles from 

aldehydes 

In a typical experiment, 30 mg (0.12 mmol) of lb was weighed under 

nitrogen in a round bottomed flask containing a magnetic stirring bar. Dry 

acetonitrile (2 mL) was then added and the solution was warmed to 40 °C in 

an oil bath. The aldehyde (0.40 mmol) was added in one portion and the 

reaction mixture was stirred for 2.5 h. After the volatiles were removed 

under vacuum, the glutaronitriles were eluted on a silica gel column with Et^O 
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in hexane. The ratio of Et^O was gradually increased from 0% to 60% in 5% 

portions. The dinitriles eluted with about 40% Et^O in hexane to afford 43-

48% of a mixmre of isomers and 45-51% of diastereomers of the Z-isomer. 

Attempts to isolate the E-isomer form the mixture by column chromatography 

failed. 

General procedure for the preparation of glutaronitriles from 

nitriles. 

This reaction was carried out by weighing 25 mg (0.12 mmol) of la or 

30 mg of lb (0.12 mmol) under nitrogen in a 10 mL round bottomed flask 

containing a magnetic stirring bar. To this was added 2 mL of the solvent and 

the resulting solution was warmed to the required temperature (Table 1). The 

nitrile was then added in the ratio required and the mixture was stirred for the 

time shown in Table 1. Removal of the volatiles under vacuum followed by 

column chromatography using ether and hexane as mentioned above afforded 

the glutaronitriles."^ 
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Table 1. Conditions and yields for the preparation of glutaronitriles.'' 

substrate solvent T C C )  cat." product (yield 

%) 

3 CH3CN 30 la or b 7 (98)'-" 

4 CH3CN 30 la or b 8  (8 i r  

5 CH3CN 30 la or b 9 (85r 

6 CH3CN 30 la or b 10 (95 r 

11 QH, 40 la 17 (98)'^ 

12 QH, 40 lb 19 (90r 

12 MeOH" 50 la 19 (90r 

13 QH, 30 Ic or la 18 (94)" 

14 40 la or lb 0 

15 QH, 25 lb 8 (96) 

16 CH3CN® 25 lb 0 

The time was 2.5 h unless stated otherwise. ''Present in 10 mole per cent 

concentration unless stated otherwise. The amount of based used was 30 mole 

percent. The reaction time was 1 hour in the presence of 10 mole percent of 

la or Ic. ""In addition to the glutaronitrile 19. 10% of isomerized substrate 

was isolated (see text). '^The reaction time was ten minutes. ^Several solvents 

were tried (MeOH, C^H^, CH3CN, THF, Et^O). The reaction was also 

attempted at room temperature. 
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Supporting Information 

'H NMR and "C NMR Data 

7. 'H NMR (CDCI3): 0.80-1.30 overlapping region (lOH), 1.52-1.80 

overlapping region (IIH), 2.1-2.2 (m, IH), 2.34-2.65 (m, 3H), 6.09 (d, IH). 

"C NMR (CDCI3): 20.23, 25.27, 25.31, 25.98, 26.09. 30.58, 30.77, 32.20. 

32.25, 38.28, 39.61, 41.08, 47.59, 112.28. 116.01, 118.03. 156.77, 157.16 

ppm. Anal. Calcd. for CigHigN, C, 79.95; H. 9.69; N. 10.36. Found C. 80.15; 

H, 9.91; N, 10.08. HR MS (EI) m/e (M*) calcd for C.gH^eN, 270.20960. obsd 

270.20896. 

8. 'H NMR (CDCI3); 0.88-0.97 overlapping region (6H), 1.03-1.12 

overlapping region (6H), 1.65-1.83 (m, IH), 2.08-2.16 (m. IH), 2.36-2.45 

(m. IH) 2.57-2.65 (m, IH) 2.80-2.88 (m, IH), 6.09 (d, IH). '^C NMR 

(CDCI3): 20.29, 20.43, 20.66. 22.22, 22.24, 30.72, 31.73, 48.59. 112.18, 

115.83, 117.91, 158.58 ppm. Anal. Calcd. for C,2H,8N2 C, 75.74; H, 9.53; N, 

14.72. Found C, 76.65; H, 9.67; N, 13.68. HR MS (EI) m/e (M") calcd for 

C.aH.gN, 190.14700, obsd 190.14685. 

9. Obtained as a mixture of diastereomers. 'H NMR (CDCI3): 0.88-0.98 

overlapping region (9H), 1.10 (t, 3H), 1.32-1.67 overlapping region (4H), 

2.3-2.55 (m, 2H), 2.64-2.71 (m, 2H), 6.12 (d, IH). ''C NMR (CDCI3); 10.85, 

10.88, 10.95, 11.93, 12.05, 12.09, 16.06, 16.10, 16.18, 16.29, 20.13, 20.21, 
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20.25, 20.33, 20.57, 20.63, 26.48, 26.50, 26.60, 26.66, 29.57, 29.58, 29.60, 

36.63, 36.75, 36.80, 36.85, 38.77, 38.83, 46.48, 46.63, 47.02, 47.21, 113.12. 

113.62, 116.08, 116.10, 116.22, 116.26, 117.93, 117.97, 118.06, 118.10, 

157.33, 157.42, 157.62, 157.71 ppm. HR MS (EI) m/e (M*) calcd for 

C,,H,3N, 218.17830, obsd 218.17812. 

10. 'HNMR (CDCI3): 0.84-0.98 overlapping region (13H), 1.27-1.40 

overlapping region (4H), 1.44-1.61 (m, 4H), 2.44-2.52 (m. 3H), 2.60-2.72 

(dd, IH), 6.07 (d, IH). "C NMR (CDCI3); 10.31, 10.47, 11.92, 12.05, 20.49, 

21.44, 22.19, 27.85, 27.88, 42.28, 44.57, 46.31, 115.13, 116.47, 118.21, 

156.42 ppm. HR MS (EI) m/e (M*) calcd for 246.20960, obsd 

246.20958. 

17. 'H NMR (CDCI3 0.93 (t, 3H), 1.11 (t, 3H), 1.55-1.70 (m, 2H). 2.44-2.54 

(m. 5H0, 6.37 (t, IH). "C NMR (CDCI3 11.51, 13.24, 22.55, 25.17, 25.90, 

43.29, 114.50, 115.26, 117.56, 152.69 ppm. HR MS (EI) m/e (M*) calcd for 

C.oH.^N. 162.11570, obsd 162.11569. 

18. Both 'H NMR and '^C NMR Compared favorably with that reported in J. 

Org. Cliem. 1970, 670. 

19. 'H NMR (CDCI3 ) 1.26-1.35 overlapping region (3H), 1.51-1.63 

overlapping region (IIH), 1.99 (m, 4H), 2.38 (AB q, 4H), 3.28 (s, IH), 5.79 

( t ,  IH) .  
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CHAPTER 5 

P(RNCH2CH2)3N-CATALYZED synthesis OF P-HYDROXY 

NITRILES 

A paper published in the Journal of Organic Chemistry 1999, 64. SOQC" 

Philip Kisanga,'' " Dale McLeod,'' Bosco D'Sa® and John Verkade'' '^ 

Abstract 

We herein report the successful synthesis of P-hydroxy nitriles in ver>' 

good to excellent yields from aldehydes and ketones in a simple reaction that is 

promoted by strong non-ionic bases of the title type. The reaction occurs in the 

presence of magnesium salts which activates the carbonyl group and stabilizes 

the enolate thus produced. 

Introduction 

3-Hydroxy nitriles are useful intermediates in organic synthesis as, for 

example, in the synthesis of 1,3-aminoalcohols.' As a result, several methods 

have been developed for their synthesis. The most common methods for 

^ Reproduced with permission from Journal of Organic Chemistr\'. Copyright 1999, American Chemical 
Society. 
" Graduate student and University Professor, respectively. E)epartment of Chemistry, Iowa State University. 
•" Primary researcher and author. 

Pfizer Corporation. 
" Schering-Plough Research Institute, 1011 Morris Avenue. Union, NJ 07083. 
' Author for correspondence. 
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preparing P-hydroxy nitriles involve the reaction of a 1,2 epoxide" with a nitrile 

in the presence of metal salts such as LiC104/KCN,^ using lanthanide(III) 

alkoxides as catalysts'* or with acetone cyanohydrin under mildly basic 

conditions/ However, these approaches succeed only with simple aliphatic 

epoxides and the yields range from poor (35%) to very good good (95%) with 

the exception of the LiCI04/KCN reagent that leads to yields ranging from 80-

98%. Another recent method for the synthesis of p-hydroxy nitriles includes the 

use of a manganese-lead system to promote the coupling of an alkyl iodide, 

acrylonitrile and a ketone.*^ The toxicity of lead and DMF (used as the solvent) 

make this method envirormientally unsafe. A mercucry-assisted reaction has 

also been reported. In this process an electron deficient alkene is treated with 

mercury fulminate and lithium bromide and the reaction mixture is heated at 50 

°C to afford the (3-hydroxy nitriles in low to moderate yields.^ However, the 

toxicity of mercury and the lengthy reaction times required render this method 

unattractive. Bahradi et al} utilize aryl halides as the precursors of 

electrogenerated bases which are then used to deprotonate acetonitrile. The 

anion thus produced can add to acetone or aldehydes in DMF to produce the 

title compounds in 52-74% yield. P-Hydroxy nitriles can also be synthesized 

by ionization of an a-hydrogen of acetonitrile by /i-butyllithium (sold as a 
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flammable solution) or alkali amides, followed by condensation with ketones 

and aldehydes.^ When /z-butyllithium is employed, a temperature of -80 °C is 

required to give the best yields (47-89%) and if alkali amides are employed, a 

temperature of -33 °C is required to provide yields up to 93%. A simple room 

temperature procedure was developed by Maasalu et al.which involved 

reacting acetonitrile with carbonyl compounds in the presence of powdered 

KOH. However, the yields for the reaction were moderate ranging from 43-

68%. Although several other methods exist for the preparation of P-hydroxy 

nitriles, they involve a multi-step synthesis," '- they make use of highly toxic 

compounds,they proceed with poor to moderate overall yields,'^ or they 

require low'" temperatures. 

The proazaphosphatranes la/la','® b,'^ and have recently been shown 

to be strong non-ionic bases capable of deprotonating acetonitrile,"' benzyl 

nitrile,-' nitroalkanes" and other activated methylenes,"^ thereby providing 

1a la' lb: R = APr 
1c: R = Me 

access to anions that we have successfully employed in useful transformations. 

In our continued search for reactions in which these proazaphosphatranes 
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provide improved synthetic methodology over conventional approaches, we 

have found that bases of type 1 are efficient catalysts for the preparation of P-

hydroxy nitriles. 

Results and Discussions 

We previously reported that ketones do not react with acetonitrile in the 

presence of bases of type 1."' In hopes of activating the carbonyl function of 

this class of compounds to attack by "CH2CN, we investigated the use of Lewis 

acids such AICI3, BF3, BFj-OEt^, MgBr^ and Hgl^. Thus we were able to detect 

the formation of 1-2% of ^-hydroxy nitriles (estimated by 'H NMR 

spectroscopic integration) in the reaction of cyclohexanone with acetonitrile in 

the presence of one equiv of BF3*OEt2 or Hgl2 and 30 mole percent of la. The 

other Lewis acids either induced no detectable reaction or produced 

complicated reaction mixmres. When the reaction was repeated in the presence 

of one equiv of magnesium sulfate or magnesium bromide and 30 mole percent 

of la, the reaction mixture produced about 40% of the a,P-unsaturated nitrite in 

addition to 59% of the products identified by 'H NMR spectroscopy as (3-

hydroxy nitrile. When the concentration of the base was reduced to 15 mole 

percent in the same reaction, the conversion to P-hydroxy nitrile increased to 

72%. At 10 mole percent in another repetition of this reaction, 88% of the 
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products produced was observed to be the P-hydroxy nitrile while 11 percent 

was identified by 'H NMR spectroscopy as the a,P-unsaturated nitrile. 

Increasing the amount of the magnesium compound to 2.2 equiv led to the 

production of 96% of the P-hydroxy nitrile in 4 hours and no NMR 

detectable unsamrated nitrile. Seventeen carbonyl compounds were then 

treated under these optimized conditions and the results are shown in Table 1. 

The reaction is assumed to proceed through the pathway shown in Scheme 1. 

2 3 4 5 6 7 

8 9 10 11 12 

O o 

H 

13 14 15 16 

17 18 
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Table 1 shows that ketones participating in this reaction afford P-hydroxy 

nitriles as the only products. This is due to the sterically hindered nature of the 

tertiary alcohols produced which prevents further deprotonation by the bulky 

Scheme 1 
1 + CH3CN 1H+ + -CH2CN 

"1 OH 

"1 OMg* 

RR'C=0»Mg ,2+ 

base la. (3-Hydroxy nitriles formed from aldehydes on the other hand, (i.e., 

secondary alcohols) are less sterically hindered and can be deprotonated by la 

(Scheme 2) leading to a,P-unsaturated nitriles. 

Scheme 2 

OH 
+ 1 \ ' /=\ + 1H[OH] 

H CN H CN ' ' 

Sterically hindered ketones 5 (menthone) and 7 (2,4-dimethyl-3-

pentanone) did not react with acetonitrile in the presence of la under our 

conditions. This is because the approach of the nucleophilic •CH2CN ion to the 

ketonic carbonyl is hampered by the bulk of the alkyl groups. Acetophenone 

(11) was unreactive, presumably as a result of its resonance stabilization. The 

enolizable aldehyde 18 (2-phenylpropionaldehyde) produced no detectable 3-

hydroxy nitrile. The protonated la that was detected in the reaction mixture by 
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^ 'P  NMR spec t roscopy  i s  a t t r ibu tab le  t o  the  p ro tona t ion  o f  la that occurs in the 

pre-equilibrium shown for the general case in Scheme 1. However, the 

"CH^CN that is formed here apparently does not attack the carbonyl. 

Combination of a solution of 2-phenylpropionaldehyde (18) with a solution of 

la in acetonitrile leads to deprotonation of 2-phenylpropionaldehyde (18) by 

either la or CHoCN to give a resonance stabilized enolate. The involvement of 

CHoCN in the deprotonation of 2-phenyipropionaldehyde (18) was shown by 

cann ing out the reaction in CD3CN. 'H NMR analysis of the reaction mixture 

after 2 hours revealed the presence of a substantial amount of CHD^CN. The 

dimerization of 2-cyclohexenone (6) in the presence of the catalysts of type 1 is 

under further investigation in our laboratories. The reaction of primary 

aldehydes (represented in this study by n-heptanal) to form the corresponding 

aldol product isolated in 99% yield had been reported previously in a separate 

study."' The reaction of 2-methylcyclohexanone (4) to form the corresponding 

novel P-hydroxy nitrile in 91% yield testifies to the efficiency of our 

methodology. Both lb and Ic are also catalysts for the preparation of P-

hydroxy nitriles. The results of the reaction of carbonyl compounds with 

acetonitrile in the presence of lb and magnesium sulfate are given in Table 2. 

Contrary to our observation with la, the reaction of acetonitrile with trimethyl 
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acetaldehyde in the presence of lb and 2.2 equiv of magnesium sulfate does not 

produce substantial amounts of the corresponding undesired a,P-unsaturated 

nitrile and gives higher yields of the corresponding ^-hydroxy nitrile. This is 

attributable to the relatively stronger basicity of la (resulting from its ability to 

exist in a zwitterionic amide form la') which is less sterically hindered.'®" 

Base la' is thus better capable of effecting dehydration of the desired product. 

The reaction of aromatic aldehydes produces a mixture of P-hydroxy 

nitriles and a,P-unsaturated nitriles. This is attributed to resonance stabilization 

of the a,P-unsaturated nitriles derived from the aryl ring compared with that of 

the corresponding P-hydroxy nitriles. We reasoned that this propensity of 

aromatic aldehydes is probably due to the presence of the alkoxide anion that 

deprotonates the a-methylene in the products, thus leading to the elimination of 

water during work-up. We therefore decided to quench the reaction of 

benzaldehyde (10) with acetonitrile in the presence of 20 mole percent of lb, 

with MeOH prior to work-up. However, this resulted in only a modest 

improvement in the distribution of products (i.e., an 82% conversion to the 

desired P-hydroxy nitrile in addition to 5% of the a,P-unsaturated nitrile). We 

finally decided to use the less basic Ic instead of lb in the reaction of 10 with 

acetonitrile, and then quenched the reaction with MeOH prior to work-up. This 
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produced the P-hydroxy nitrile and the a,P-unsaturaied nitrile in conversions of 

83% and 3% respectively as estimated by 'H NMR integration of the reaction 

mixture. When the reaction was carried out at 0 °C for six hours and then 

quenched at this temperature with MeOH before passing through a silica gel 

column, the production of P-hydroxy nitriles from benzaldehyde (10) increased 

to 86%. Upon increasing the concentration of Ic to 30 mole percent a 92 

percent conversion to the desired product was observed with only a trace 

amount of the a,P-unsaturated nitrile formed. The results of the reactions of 

aromatic aldehydes with CH3CN in the presence of la -Ic are shown in Table 3. 

The data in this table demonstrate that the dependence of this reaction on the 

base used (la, lb, or Ic) is minimal. This table also shows that increasing the 

reaction time to 18 hours at 0 °C increases the conversion by an average of 5% 

while the amount of the a,|3-unsaturated nitriles increases by only 1-2%. 

Therefore, the rate of elimination of water is effectively suppressed at this 

temperamre. 

The reactions of p-chlorobenzaldehyde (12) and p-anisaldehyde (15) 

proceeded in an unexpected manner. One would have expected 12 to be more 

reactive than benzaldehyde (10), which in turn would be more reactive than 15 

based on inductive effects. However, we find that while 10 reacts 
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quantitatively, both 12 and 15 have lower reactivities. The cause of this 

anomalous reactivity is unclear at this time. Since both 10 and 12 have proven 

to be highly reactive towards "CH^CN in the absence of magnesium ion,"' we 

suspected that coordination of Mg""^ to the carbonyl group induces greater 

resonance effects (as shown in 19 and 20) which offset the -I effects in p-

chlorobenzaldehyde (12), /7-anisaldehyde (12). and 2,5-dimethoxybenzaldehyde 

(17), thereby reducing the reactivity of these compounds. The -I effect due to 

the p-chloro, p-methoxy and o-methoxy groups are expected to activated these 

aldehdyes towards nucleophilic attack by CHnCN, whereas, the +R effects 

deactivates them. Since the result observed here is deactivation, it can be 

assumed that +R effect predominates. 

To support this assumption, 4-fluorobenzaldehyde and o-anisaldehyde 

were reacted under the same conditions. An 85% and an 83% conversion to the 

corresponding P-hydroxy nitrile were observed, respectively, which are in 

accord with such a resonance effect. Despite steric hindrance of the carbonyl 

group in 2,5-dimethoxybezaldehyde (17), the corresponding P-hydroxy nitrile is 

formed in 84% yield. Although the o-OMe group is expected to deactivate the 

pMg^ 

19 20 
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carbonyl group by both induction and resonance effects, the yields with 17 and 

(9-anisaldehyde are slightly higher since resonance will produce the unfavorable 

geometry shown in 20. The yields are lower (than that of 10) as a result of a +R 

effect. 

When the reaction of benzyl cyanide was attempted with PhCHO in the 

presence of 1 mole % of Ic and 2.2 equiv of MgS04, the quantitative 

production of the corresponding a,P-unsaturated nitrile was recorded in less 

than one hour in a 'H NMR experiment. However, the preparation of the 

desired P-hydroxy nitrile was achieved in 99% yield by carrying the reaction at 

-78 °C in THF as indicated in Scheme 3. 

Scheme 3 

PhCHaCN + 
(1.1 equiv.) (1.1 equiv.) 30 min. 

THF, -78 °C PhCHO (1.0 equiv) 

TMSCI 
(2.0 equiv) 
THF. -78 °C^cr 
10 min 

MeOH. -78 °C 

TMSOMe 
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Conclusion 

Nonionic superbases of type 1 are superior catalysts for the synthesis of 

3-hydroxy nitriles under mild conditions using CH3CN and sterically 

unhindered carbonyl substrates that are not easily enolized. The advantages of 

such catalysts are: (1) The yields of the desired products are high. (2) The 

reaction occurs at room temperature in a relatively short period of time. (3) The 

catalyst can be recovered in high yields. (4) The reaction consists of one step. 

(5) Except for two of the catalysts, which are easily synthesized, all materials 

are readily commercially available including la (Strem). (6) Reagents known 

to be toxic are avoided. 

Experimental Section 

CH3CN was distilled from calcium hydride and stored over 4 A 

molecular sieves under nitrogen. MgSOj was purchased from Fischer Scientific 

and used as received. All the substrates were purchased from Aldrich Chemical 

Co. and were used as received. The bases la-lc were prepared according to our 

previously published methods. 
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General procedure for the preparation of p-hydroxy nitrites using 

acetonitrile 

In a round-bottom flask 3 mL of CH3CN, 528 mg MgS04 (2.2 equiv) and 

2 mmol of carbonyl substrate were mixed under nitrogen. In a second round-

bottomed flask 3 mL of CH3CN and 1, (0.4 equiv) were mixed. The contents of 

the latter flask were then added to the first flask and the reaction mixture was 

stirred at room temperature for 4 hours. The reaction mixture was then loaded 

directly onto a silica gel column and flashed with 100 % ethyl acetate with the 

exception of 3-hydroxy-3-methylpentanenitrile and 3-hydroxy-3,3-

dimethylpentanenitrile which were eluted with MeOH/Et^O (5:95). 

Preparation of ^-hydroxy nitriies from aromatic aldehydes 

To a mixture of the aldehyde (2.0 mmol) and anhydrous magnesium 

sulfate (528 mg 4.4 mmol) contained in a round-bottom flask, was added 2.0 

mL of dry acetonitrile under nitrogen. The suspension was placed in a constant 

temperature bath at 0 °C and the mixture was stirred for 5 minutes. A solution 

of 1 (0.6 mmol) in acetonitrile was added and the mixture was stirred for 6 

hours at the end of which 1.0 mL of MeOH was added and stirring continued 

for 5 more minutes. The reaction mixmre was then loaded on to a silica gel 
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column and eluted with 100% ethyl acetate. The crude product was then 

purified (when necessary) by column chromatography {vide infra). 

Preparation of PhCH(OH)CH(CN)Ph using Ic and benzyl nitrile 

In a round-bottom flask, 1.2 g (5.5 mmol) of Ic was dissolved in 10 mL 

dry THF under nitrogen and the solution was cooled to -78 °C. To the clear 

solution was added 0.6 mL (5.3 mmol) of benzyl nitrile followed by stirring for 

0.5 hr. To the resulting yellow solution was added 0.5 mL (5.0 mmol) of 

benzaldehyde and the mixture was stirred for an additional 10 minutes. At this 

point 1.0 mL (8.0 mmol) of TMSCl was added and the mixture was stirred for 

10 minutes. This was followed by the addition of 2.0 mL of MeOH at -78 °C 

and then the reaction mixture was allowed to warm slowly to room temperature 

over 2 hours. Most of the THF was evaporated under reduced pressure and then 

20 mL of dry ether was added to precipitate [HlcjCl that was isolated by 

filtration. After the removal of ether from the filtrate under reduced pressure, 

the crude product was eluted through a silica gel colunm using EtOAcihexane 

(70:30) to obtain 1.1 g (99% yield) of the product. 
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Puriflcation of P-hydroxy nitriles 

The crude P-hydroxy nitriles were loaded onto a silica gel column and 

the starting materials and a,P-unsamrated nitriles eluted with 60 mL of 309c 

ether in hexanes. The P-hydroxy nitriles were then eluted with ethyl acetate in 

hexane (70:30). Each of the products from isobutyraldehyde and 

trimethylacetaldehyde were first eluted with Et^O/hexane (30:70) followed by 

80 mL MeOH/Et^O (30:70). 

(l-Hydroxy-2-methylcyclohexyl)acetomtrile; Isolated as a mixmre of 

diastereomers. 'H NMR (CDCI3): 5 0.93 (d, 3H), 1.3-1.95 (m, 9H), 2.01, (bs, 

IH), 2.56 (ABq, 2H). ''C NMR (CDCI3): 6 14.86, 15.07, 21.45, 23.04, 25.27, 

30.13, 30.16, 37.09, 38.35, 77.79, 72.75, 117.87. mp 77-78 °C. HR MS (EI) 

m/e (M") calcd for N9H15NO 153.11536, obsd 153.11551. 

Catalyst recovery 

After the reaction, magnesium sulfate was filtered from the reaction 

mixture and the residue on the filter paper was washed with 10 mL of 

chloroform. The solvents were removed under vacuum and 5 mL of water was 

added. The products were then extracted with 4 x 10 mL portions of ether. The 

organic layer was then dried over anhydrous magnesium sulfate and the 
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volatiles removed under reduced pressure to afford the P-hydroxy ntriles. To 

the aqueous solution containing [lH]OH was added 0.1 mL of 37% aq HCl and 

the mixture was extracted with 4 x 10 mL portions of methylene chloride to 

afford [1H]CI which was then purified and converted to 1 according to 

previously published methods. 
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Table 1. The reaction of carbonyl compounds with acetonitrile in the presence 

of la^ and 2.2 equiv of magnesium sulfate at 25 °C for 4 hours. 

substrate P- a,P- 9c 

hydroxy unsaturated starting 

nitrile % nitrile % material' 

yield yield 

acetone (2)" 94 0 2 

cyclohexanone (3)'' 94 0 4 

2-methylcyclohexanone (4)'^ 91 0 8 

5, 7,11, 18 0 0 100 

2-cyclohexenone (6)*^ 0 0 0 

3-pentanone (8) 87 0 9 

2-butanone (9) 88 0 10 

benzaldehyde (10) 79 6 13 

p-chlorobenzaldehyde (12) 71 J 21 

2-methylbutyraldehyde (13) 95 0 0 

cyclohexanecarbocaldehyde (14) 76 <1 20 

p-anisaldehyde (15) 36" 10" 54" 

pivalaldehyde (16) 83 15 <1 

2,5-dimethoxybenzaldehyde (17) 62 <1 36 

"The amount of the catalyst was 10 mole percent unless stated otherwise. 

''Estimated by 'H NMR integration. The amount of catalyst used was 15%. 

''Only the dimer of the a,P-unsaturated enone was isolated in 95% yield. 
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Table 2. The reaction of carbonyl compounds with acetonitrile in the presence 

of lb° and 2.2 equiv of magnesium sulfate at 25 °C for 4 hours. 

substrate P- a,P- 9c 

hydroxy unsaturated starting 

nitrile nitrile % yield material" 

% yield 

acetone (2) 99 0 0 

cyclohexanone (3) 99 0 0 

2-methylcyclohexanone (4) 54 22 20 

5, 7, 11,18 0 0 100 

2-cyclohexenone (6)'^ 0 0 0 

3-pentanone (8) 98 0 0 

2-butanone (9) 97 0 0 

benzaldehyde (10) 68 7 20 

/7-chlorobenzaldehyde (12) 50" 0 50 

2-methyIbutyraldehyde (13) 9T 0 0 

cyclohexanecarbocaldehyde (14) 95 0 <1 

/7-anisaldehyde (15) 33" 33" 33 

pivalaldehyde (16) 95^^ 3 0 

''The ratio of catalyst used was 20 mole percent unless stated otherwise. 

''Estimated by 'H NMR integration. The only isolated product was the dimeric 

enone in 99% yield. ''The concentration of lb was 10 mol %. 
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Table 3. The reaction of aldehydes with acetonitrile in the presence of la-lc* 

and 2.2 equivalents of magnesium sulfate at 0 °C. 

starting material'' base 13- % a,p- starting 

hydroxy unsaturated material" 

nitrile nitrile'' 

% yield'' 

benzaldehyde (10) 
la 96(98)^^ 2 0 

benzaldehyde (10) la (98) 2 0 

benzaldehyde (10) lb (98) 0 0 

benzaldehyde (10) Ic 88 (92) 3 5 

benzaldehyde (10) Ic (97)^^ 3 0 

p-chlorobenzaldehyde (12) lb 82(84) 4 12 

p-chlorobenzaldehyde (12) Ic 77 (80) 4 16 

cyclohexanecarboxaldehyde (14) la 88(92) 4" 0 

p-anisaldehyde (15) la 71(75)'^ 6 19 

p-anisaldehyde (15) lb (78) 5 17 

p-anisaldehyde (15) Ic 78 (80) 4 16 

2,5-dimethoxybenzaldehyde (17) la 81 (85) 0 15 

2,5-dimethoxybenzaldehyde (17) Ic 84 (87)^^ 0 13 

"The amount of Ic used was 30 mole percent and the reaction time was 6 h 

unless stated otherwise. ''Values in parenthesis are conversions estimated by 

NMR integration . "^Estimated by 'H NMR integration. '^The reaction time was 

18 hours. "A small amount of unidentified material was observed. 
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Supporting Information 

NMR and NMR spectral data with peak assignments 

3-Hydroxy-3-methylbutyronitrile: These NMR spectra compared favorably 

with that reported in J. Org. Chem. 1996, 62, 4087. 

3-Ethyl-3-hydroxypentanenitrile: These spectra compared favorably with 

that reported in J. Org. Chem. 1968, 33, 3402. 

3-Hydroxy-3-metliylpentanenitrile: The boiling point compared favorably to 

that reported in Bull. Chim. Belg. 1932, 47, 251. No NMR spectra reported. 'H 

NMR (CDCI3): 6 0.97 (t, 3H), 1.35 (s, 3H), 1.66 (m, 2H), 2.18 (bs, IH), 2.51 

(d, 2H). '"C NMR (CDCI3): 5 8.10, 26.10, 30.83, 34.16, 71.34, 117.81. 

3-Phenyl-3-hydroxyproprionitrile: 'H NMR compared favorably to that 

reported in Synth. Comm. 1994, 24, 1433. NMR compared favorably to that 

reported in Tetrahedron Lett. 1994, 35, 3447. 

3-(4-Chiorophenyl)-3-hydroxypropionitrile: 'H NMR compared favorably 

with that reported in J. Org. Chem. 1991, 56, 1381. 

3-Hydroxy-4-methyUiexananenitrile: These NMR spectra compared 

favorably with that reported in J. Org. Chem. 1995, 60, 5973. 

3-Cyclohexyl-3-hydroxypropionitrile: 'H NMR compared favorably to that 

reported in J. Chem. Soc., Perkins Trans 1. 1991, 1931. 
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3-(4-Methoxyphenyl)-3-hydroxyproprioiiitrile: 'H NMR compared 

favorably with that reported in Bull. Chem. Soc. Jpn. 1994, 67, 1126. 

3-Hydroxy-4,4-dimethylpentaneiiitrile: These NMR spectra compared 

favorably with that reported in J. Org. Chem. 1995, 60, 5973. 

3-(2,5-Dimethoxyphenyl)-3-hydroxypropionitrile: 'H NMR compared 

favorably with that reported in J. Org. Chem. 1995, 60, 2261. 

2,3-Diphenyl-3-hydroxypropriomtrUe: These NMR spectra compared 

favorably with that reported in J. Org. Chem. 1995, 60, 2261. 
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CHAPTER 6 

P(RNCH2CH2)3N: AN EFFICIENT PROMOTER FOR THE 

NITROALDOL (HENRY) REACTION 

A paper published in the Journal of Organic Chemistry 1999, 64. 4298'' 

Philip B. Kisanga'"' and John G. Verkade'"^ 

Abstract 

Tlie use of catalytic amounts of the proazaphosphatranes 

P(MeNCH.CH2)3N, P(/-PrNCH.CH2)3N and P(HNCH.CH.)(/-

PrNCH2CH2)2N as nonionic bases in the reaction of nitroaikanes with 

carbonyl compounds is reported. The reaction proceeds at room temperature 

in the presence of 2.2 equivalents of magnesium sulfate to produce the 

corresponding P-nitroalkanols in generally superior yields. Aldehydes react 

quantitatively in 5-60 mins, whereas ketones require up to 3 hours, and up to 

7 hours for the reaction of ketones with higher nitroaikanes. 

Introduction 

P-Nitroalkanols are important and versatile intermediates in the 

synthesis of nitroaikanes, 2-amino alcohols and a-nitro ketones.' 2-Amino 

"• Reproduced with permission from Joumal of Organic Chemistry. Copyright 1999, American Chemical 
Society. Graduate student and University Professor, respectively. Department of Chemistry, Iowa State 
University. " Primary researcher and author. Author for correspondence. 
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alcohols are of particular significance in the synthesis of biologically 

important compounds such as epinephrine" and anthracycline antibiotics^, 

while a-nitroketones are valuable intermediates in the synthesis of several 

natural products/ P-Nitroalkanols are also important because of their 

properties as fungicides^ and because of their utility as intermediates in the 

synthesis of aminosugars,^ antibiotics such as ezomycins^"* and 

tunicamycin^'', and in the synthesis of alkaloids.^ 

Classical methods for preparing P-nitroalkanols include the 

condensation of the carbonyl substrates and a nitroalkane in the presence of 

an ionic base, such as alkali metal hydroxides, alkaline earth oxides, 

carbonates, bicarbonates. alkoxides, alkaline earth hydroxides, or 

magnesium and aluminum alkoxides.' While this approach is quite simple 

and inexpensive, its limitations often render it unattractive. For example, 

base-catalyzed elimination of water can occur to form nitroolefins which 

unfortunately polymerize readily. Moreover, it is not easy to remove the 

base before work-up because acidification of the reaction mixture may lead 

to the Nef^ reaction if it is not done with extreme care. The use of primary 

amines and triethylamine as condensing agents has also been reported.' 

Although this methodology leads to high yields of the P-nitroalkanol, the 

production of unsaturated nitro compounds through base-catalyzed 
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elimination of water has been observed as well as formation of 1,3-dinitro 

compounds. The latter substrances are also the predominant products when 

diethylamine is used as a base.' 

Several variations of the nitroaldol reaction have recently been developed 

which include the use of tetramethylguanidineJ® dendritic catalysts,'' Amberlyst 

A-21,'" and a sodium hydroxide-catalyzed process in the presence of 

cetyltrimethylammonium chloride (CTACl).'^ Although these methods afford high 

yields of the nitroaldol with aldehydes, they suffer from their inability to produce 

high product yields with alicyclic or aliphatic ketones when such reactions are 

even observed. Self-condensation'® of aliphatic ketones has been cited as a 

possible reason for the inability of this class of compounds to form the nitroaldol 

product in appreciable amounts. 

The proazaphosphatranes la,'"* b,'^ and have recently been 

shown to be strong non-ionic bases. Thus, they are able to deprotonate 

acetonitrile,'®" benzyl nitrile'® and other activated methylene compounds,"^ 

thereby providing access to carbanions that can in mm participate in 

interesting and useful transformations. In our continued search for reactions 

in which these proazaphosphatranes provide improved synthetic 

methodology over conventional approaches, we have found that bases of 

type 1 also catalyze the Henry reaction in a superior manner. 



www.manaraa.com

99 

Results and Discussion 

The simplicity of reaction 1 stems from the fact that the catalytic 

amount of the base used is protonated during the reaction to form the salt 

shown that is easily separated chromatographically; a process that requires 

neither acidic nor aqueous work-up. Self-condensation of ketones is not 

possible under the reaction condition since none of the promoter (1) is 

present in unprotonated form at the concentrations employed. Because the 

basicity order of la-c is Ic < lb < la,'^ we focus our attention here mainly 

on la and lb. It is worth mentioning that the pK^ of la-lc has been 

estimated to have a lower limit of 25'^ and an upper limit of 26.8'^'' in 

DMSO based on competetitive deprotonation. 

The reaction of carbonyi compounds with nitromethane in the presence 

of la 

The reaction of aldehydes with nitromethane in the presence of la is 

fast and virtually quantitative. Thus for example, aldehyde 2k forms 3k (via 

the plausible pathway shown in Scheme 1) in less than 5 minutes in the 

presence of 2.2 equivalents of MgS04 and 20 mole percent of la. The 

decision to use MgS04 as a Lewis acid was based on another study'®'' in 

which we found that MgHr, and MgSOj were the only Lewis acids found to 
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Scheme 1 

1 

X 
CH3NO2 

-CH2NO2 

activate carbonyl groups in the synthesis of P-hydroxy nitriles catalyzed by 

bases of type 1. Since MgS04 is less expensive and more convenient to 

handle and its insolubility allows it to be easily filtered by column filtration, 

we have thus far preferred to use it over MgBr^. Moreover, MgBr2 in the 

present study did not appear to be effective. The reaction of cyclohexanone 

2a (employed as a model ketone) with nitromethane in the presence of 10 

mole percent of la is rather sluggish requiring 18 hours at room temperature 

to achieve a yield of 3a (48%) that is comparable to literature values (48-

74%'°-'). Although the yield of 3a increased to 64% when the amount of la 

was increased to 20 mole percent, 8% of the corresponding dinitro derivative 

4a is also formed. When this reaction was repeated in the presence of 30% 

mole percent of la, the yield of the nitroaldol product increased to 68% 

while the production of the dinitro product 4a increased to 20%. In the 
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presence of 2.2 equivalents of anhydrous magnesium sulfate (in which the 

Mg"^ presumably acts as a carbonyl group activator) and 30 mole percent of 

la, the conversion was quantitative and a 96% isolated yield of the 

nitroaldol product 3a was obtained in about 3 hours. Reducing the amount 

of la to 10 mole percent did not materially affect the yield (95%) of 3a. At 

concentrations lower than 10 mole percent of la, some of the starting 

material was still observed after 3 hours. The reactions of cyclopentanone, 

acetone, 2-butanone, and 3-pentanone with nitromethane in the presence of 

10 mole percent of la and 2.2 equivalents of Mg""^ were equally successful. 

Pertinent data for these reactions are shown in Table 1. 

Since the formation of the dinitro compounds (4) has been reported in 

several syntheses of P-nitroalkanols,' we decided to investigate the 

limitations such reactions might have on our methodology. At a higher 

concentration of la (30 mole percent), the formation of the dinitro 

compounds was observed to begin at reaction limes greater than 5 hours. 

When the reaction was allowed to proceed for 18 hours in the presence of 30 

mole percent of la and 2.2 equivalents of magnesium sulfate, an 84% yield 

of the nitroaldol 3a and a 14% yield of the dinitro derivative 4a was realized. 

The reactions of cyclopentanone, acetone, and 2-butanone with 

nitromethane in the presence of 30 mole percent of la and 2.2 equivalents of 
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Mg"^ were equally successful. With 3-pentanone (2e), only 43% of the 

nitroaldol product 3e was isolated in addition to 23% of the corresponding 

dinitro product 4e, with the rest being unidentified material. Therefore, even 

with longer reaction times, the formation of the nitroaldol products still 

predominates. The sterically hindered ketones 2f and 2h (as a mixture of 

diastereomers) have so far failed to form the corresponding nitroaldol 

products when reacted with nitromethane in the presence of la and 2.2 

equivalents of magnesium sulfate. Starting materials were recovered 

quantitavively. 

The formation of the dinitro products (via the plausible pathway 

shown in Scheme 2) in the reaction of ketones with nitromethane in the 

Schemp' 

CH3NO2 

CHaNOa 

NO2 

NO2 

+ OH-

R OH 
3" 

H iPr 

1a (2) 

la' 
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4a 4b 4c 4d 4e 

presence of catalytic amounts of la can be rationalized in terms of the 

relative basicities and steric features of la-lc.'"' In addition to the superior 

base strength of la, which is attributed to its ability to exist as an amide base 

in tautomeric form (equation 2)/"* this base is also less sterically hindered 

because of the more open amide site in la'. At higher concentrations (30 

mole percent) the free base present induces a base assisted dehydration. At 

longer reaction times, the alkoxide 3' produced can tautomerize to 3", 

leading to the elimination of OH" and subsequent formation of the dinitro 

system 4 as shown in Scheme 2. The results of reactions of nitromethane 

with some of the ketones involved in this study with 30 mole percent of la 

in the presence of 2.2 mole equivalents of magnesium sulfate for 18 hours at 

room temperature are shown in Table 2. 

The reaction of carbonyl compounds with nitroalkanes in the presence 

of lb 

The reaction of aldehydes is fast and quantitative in the presence of 

lb. Thus, 2k reacts with nitromethane in the presence of 20 mole percent of 

lb and 2.2 equivalents of magnesium sulfate in less than 5 minutes at room 
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temperature to form 3k as the only product. When 2a was reacted with 

nitromethane in the presence of 10 mole percent of lb and 2.2 equivalents of 

magnesium sulfate for 3 hours, a 95% yield of 3a was isolated and no dinitro 

derivative 4a was observed. Scheme 1 suggests that the reaction requires 

catalytic amounts of magnesium ions. In the presence of 1 mole percent of 

MgSO^, 2a reacted with nitromethane in the presence of 10 mole percent of 

lb to form 3a (ca 70% conversion as estimated by 'H NMR integration) in 3 

hours at room temperature. When the temperature was raised to 40 °C, the 

conversion in 2 hours was 73%. Increasing the reaction time beyond 2 hours 

led to no significant change in the conversion. On the other hand, increasing 

the amount of magnesium sulfate to 1 mole equivalent increased the 

conversion to 83% in 2 hours at the same temperature. At mole ratios 

greater than 2.0 equivalents of magnesium sulfate and 10 mole percent of 

lb, the conversion in 2 hours at 40 °C was estimated by 'H NMR integration 

to be 95%. This dependence of the nitroaldol reaction of ketones on Mg""^ 

concentration is attributable to its activation of the carbonyl group via 

oxygen coordination and its subsequent stabilization of the alkoxide 

produced upon C-C bond formation. This dual role of MgS04 is again 

demonstrated in the reaction of 2m with MeNO^ in the presence of 1 mole 

percent of magnesium sulfate and 10 mole percent of lb. Although this 
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reaction is complete in about 1 hour at 40 °C, several spots were observed on 

TLC. In the presence of 2.2 mole equivalents of magnesium ions, however, 

the conversion is complete in less than 1 hour at room temperature with 3m 

as the only product. Results of the reactions of 2a-2q with nitromethane in 

the presence of lb and 2.2 mole equivalents of magnesium sulfate are 

summarized in Table 3. 

That high concentrations of 1 deprotonate the methylene group in 

products of type 3 (leading to the formation of the corresponding dinitro 

compound 4 as shown in Scheme 2) is demonstrated by our observation of 

the reactions of nitromethane with some of the ketones used in this study. 

The results of these reactions in the presence of 40 mole percent of lb and 

2.2 equivalents of magnesium sulfate for 18 hours at room temperature are 

given in Table 4. No corresponding of the dinitro products were observed at 

reaction time of less than 5 hours. 

In a similar way to that described above, nitroethane reacts with 

cyclohexanone (2a) and isobutyraldehyde (2m) in the presence of 10% of lb 

and 2.2 equivalents of magnesium sulfate to form the corresponding 

nitroaldols 3r and 3s in 82% and 98%, respectively. However, we found 

that 1-nitropropane requires 1.25 h to undergo a quantitative reaction with 

heptanal (2q) to form a 3:2 mixture of the threo and erythro diastereomers. 
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respectively. The diastereomeric ratio was determined by NMR 

integration based on a comparison of both the 'H NMR and NMR 

spectral data for the diastereomeric mixture with the those reported by 

Seebach at al~ for the reaction of /2-hexanal with 1-nitropropane. The 

reaction of benzaldehyde under similar conditions, afforded only 85% 

conversion to the desired P-alkanol as observed by NMR integration of 

the reaction mixture. Upon increasing the amount of the base to 0.2 equiv. 

this substrate also reacted quantitatively in 2.25 h to afford a 3:1 {tlireo: 

erythro) diastereomeric mixture of 3u in 97% yield. The observed 

preference for the threo diastereomer is probably due to the favorable 

intramolecular hydrogen bonding in this diastereomer. The reaction of 

cyclohexanone as a model ketone under similar conditions proceeded with 

43% conversion but afforded the nitroaldol 3t in 93% yield upon increasing 

the ratio of lb to 0.3 equiv and carrying out the reaction for 7 hours (Table 

3). However, nitrocyclohexane did afford the corresponding nitroaldols 

when reacted with each of benzaldehyde, n-heptanal, 2-butanone and 

cyclohexanone. Thus benzaldehyde and cyclohexanone were quantitatively 

isolated after reaction for 6 hours and 72 hours, respectively, unreacted 2-

butanone was lost on evaporation of the volatiles and work-up afforded 

nitrocyclohexane quantitatively. n-Heptanal, however, afforded the 
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corresponding aldol product in 91 % yield. The formation of the aldol 

product from primary aldehydes has been observed in our laboratories in 

previous studies.'® The lack of reactivity of nitrocyclohexane in these 

reactions is assumed to be the result of steric hindrance. Although 

protonation of lb is observed by ^'P NMR analysis, the nitronate anion thus 

produced, which is associated with the azaphosphatrane counter cation 

(equation 1) form a bulky ion pair that is too sterically hindered to approach 

a carbonyl group. The use of magnesium bromide (the only other Lewis 

acid we have so far found to be compatible with our system'®'') was also 

fruitless. The reaction of 2-nitropropane with /z-heptanal on the other hand 

proceeded to afford the corresponding nitroaldol 3w in 99% yield in 1.5 h 

while the reaction with benzaldehyde required 4 hours to afford a 95% yield 

of the desired product 3x. The reaction of 2-nitropropane with 2-butanone 

afforded only the starting nitroalkane after workup and removal of the 

volatiles while the reaction of cyclohexanone afforded a mixture of the 

starting materials after work-up. The inability of the 2-nitropropane to 

produce 2-nitroalkanols is again explained in terms of the steric hindrance of 

the ion pair formed after deprotonation. An attempt at employing 

magnesium bromide as the carbonyl activator for this substrate was also 

fruitless. 
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The reaction of carbonyl compounds with nitromethane in the presence 

of Ic 

The yields of P-nitroalkanols using Ic as a base are equal, within 

experimental error, to those obtained with lb. For example, 2a or 2b 

reacted with nitromethane in the presence of 10 mole percent of Ic and 2.2 

mole equivalents of magnesium sulfate to afford a 95% and a 91% yield of 

the nitroaldol products 3a and 3b, respectively. The yields of the same two 

products in the presence of 10 mole percent of lb were 96% and 93% 

respectively (Table 3). However, in contrast to our observation with lb, 

increasing the concentration of Ic from 10 up to 40 mole percent did not 

lead to the formation of the corresponding dinitro product. Thus when the 

ratio of Ic was increased from 10 up to 40 mole percent in the reaction 

ketones in the presence of 2.2 equivalents of magnesium sulfate, the yield of 

the nitroaldol product did not appear to change appreciably. For example, 

2a gave a 97% yield of 3a in 18 hours while 2b produced a 92% yield of the 

corresponding nitroaldol in the presence of 40 mole percent of Ic. The 

yields of the same two products with 10 mole percent of Ic {vide supra) 

were 95% and 91%, respectively. This result is consistent with the relatively 

weaker basicity of Ic relative to lb and la. 
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We have so far been unable to induce the nitroaldol reaction with 

aromatic ketones. Only starting materials were recovered upon reacting 

acetophenone (21) with nitromethane in the presence of 30 mole percent of 

either la or lb and 2.2 mole equivalents of magnesium sulfate. Warming 

the reaction mixmre to 40 °C also did not lead to the production of the 

expected P-nitroalkanol. This result can be attributed to resonance 

stabilization of the carbonyl group by the benzene ring in the substrate. 

Conclusion 

We have shown here that the proazaphosphatranes la, lb, and Ic are 

highly efficient promoters at room temperature for the Henry reaction in the 

presence of 2.2 equivalents of magnesium sulfate. While the reaction of 

primary nitroalkanes and 2-nitropropane proceed with excellent yields, the 

reaction of nitrocyclohexane fails under similar conditions. 

The high yields observed in the nitroaldol reaction of ketones 

promoted by bases of type 1 are due to the virtual lack of free base present at 

the concentrations used in these reactions. Since the corresponding 

nitronates are much weaker bases than the alkoxide, they are unable to 

deprotonate the ketones (a process that would lead to self-condensation). 

Once the nitronate adds to the ketone, the alkoxide thus produced 
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preferentially deprotonates the more acidic nitroalkane that is present in 

large excess. Thus ketone self-condensation is less likely to be observed 

under these reaction conditions. 

Experimental Section 

All reactions were carried under nitrogen. The carbonyl compounds 

were purchased from Aldrich Chemical Company and used as received. 

Nitroethane and nitromethane were dried over anhydrous magnesium 

sulfate, distilled under nitrogen and then stored over 4A molecular sieves. 

General Procedure for the Preparation of the Nitroalkanols 

In a typical experiment, a small test tube containing a micro stirbar 

and 0.528 g (4.4 mmol) of magnesium sulfate was sealed with a septum and 

then evacuated to 200 millitorr. The mbe was then filled with nitrogen gas 

followed by 1.0 mL of the nitroalkane, and then the mixture was stirred 

vigorously until all the magnesium sulfate was incorporated into the 

suspension. To this suspension was added 2.0 mmol of the carbonyl 

compound. The mixmre was stirred for 5 min after which a solution of 60 

mg of lb (or 43 mg of la or 52 mg of Ic, 0.20 mmol) dissolved in 1.0 mL of 

t h e  n i t r o a l k a n e  w a s  a d d e d .  A f t e r  t h e  t i m e  p e r i o d s  s p e c i f i e d  i n  T a b l e s  1 - 5  

had elapsed, any remaining nitroalkane was removed under reduced 
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pressure. The reaction mixture was then loaded onto a small silica gel 

column and eluted with 100% diethyl ether. Nitroalkanols 3e, 3k, 31. 3m, 

3n, 3q, 3s (as a 1:1 mixture of diastereomers), 3t and 3u were obtained as 

pure products in excellent yields, while the others were purified as detailed 

below. 

Purification of the dinitro product 

The product mixture of the nitroalkanol and the dinitro derivative was 

loaded onto a silica gel column using a small amount of ether. The 

separation of the two compounds was then achieved by eluting with diethyl 

ether in pentane. The ratio of ether was increased in 5% portions from 09c 

to 80% in 50 mL volumes, and 20 mL fractions were collected. The 

nitroalkanol eluted first while the dinitro compounds followed at about 50% 

diethyl ether in pentane. 
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Table 1. Reactions of ketones with nitromethane in the presence of 10 mole 

percent of la and 2.2 equivalents of magnesium sulfate for three hours. 

substrate product (% substrate product {'7c 

yield) yield) 

2a 3a (95) 2d 3d (88) 

2b 3b (93) 2e 3e (60) 

2c 3c (94) 2P -

""Only the starting material was recovered at the end of the reaction time. 
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Table 2. Reactions of ketones with nitromethane in the presence of 30 mole 

percent of la and 2.2 equivalents of magnesium sulfate 18 hours. 

substrate product (% yield) product (% yield) 

2a 3a (75) 4a (21) 

2b 3b (59) 4b (15) 

2c 3c(83) 4c (13) 

2d 3d (61) 4d (27) 

2e 3e (43) 4e (23) 

2f- - -

2g 3g (38) 4g (0) 

2h» - -

"Only starting material was recovered at the end of the reaction time. 
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Table 3. The reaction of carbonyl compounds with nitroalkanes in the 

presence of lb and 2.2 equivalents of magnesium sulfate." 

substrate product {% substrate product 

yield) yield) 

2a 3a (70)" 2m 3m (98)'^ 

2a 3a (96) 2n 3n (96)= 

2b 3b (93) 2o 3o (92)= 

2c 3c (91) 2p 3p (88)= 

2d 3d (85) 2q 3q (99)= 

2e 3e (67) 2a 3r i%2r 

2f 3f(0) 2m 3s (98)= '^ 

2g 3g (40) 2a 3t (93)'-

2h 3h(0) 2n 3u (97)''' 

2i 3i (0) 2q 3v (99)' ' 

2j 3j (94)"= 2q 3w (99)' '' 

2k 3k (99)" 2n 3x (95)'-' 

21 31 (98)"^ 

"The amount of lb used was 10 mole percent and the reaction time was 3 

hours unless stated otherwise. "The reaction was performed at 40 °C for 2 

hours in the presence of 1% MgSOj and 30 mole percent of of lb. "^The 

reaction time was 40 minutes and the amount of lb used was 10 mole 

percent. '^The reaction time was 5 minutes. The nitroalkane used was 

nitroethane. ^The nitroalkane used was l-nitropropane. ®The amount of lb 
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Table 3 (continued) 

used was 0.3 equiv and the reaction time was 7 h. ''The amount of lb used 

was 0.2 equiv and the reaction time was 2.25 h. 'The reaction time was 1.25 

h. The nitroalkane used was 2-nitropropane. ''The reaction time was 1.5 h. 

'The reaction time was 4 h. 
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Table 4. The reaction of ketones with nitromethane in the presence of 40 

mole percent of lb and 2.2 equivalents of magnesium sulfate."* 

substrate product (% yield) product (% yield) 

2a 3a (79) 4a (15) 

2b 3b (59) 4b (9) 

2c 3c (85) 4c (13) 

2d 3d (64) 4d (21) 

2e 3e (40) 4e (20) 

2f - -

"^The reaction time was 3 hours. ''Only starting material was recovered. 
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Table 5. Comparison of the reaction of ketones with lb and Ic in the 

presence of 2.2 equivalents of magnesium sulfate. 

substrate yield with yield with yield with 10 yield with yield with 

10 mol % 30 mol % mol % Ic'' 30 mol % 40 mol % 

lb'' lb' Ic' Ic'' 

2a 95 97 95 96 97 

2b 91 93 91 92 92 

'The reaction time was 3 hours, ^he reaction time was 18 hours. 
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Supporting Information 

NMR and NMR Data with peak Assignments 

3a: These NMR spectra compared favorably with that reported in Helw 

Chim. Acta 1979, 2258. 

3b: These NMR spectra compared favorably with that reported in Helv. 

Chim. Acta 1979, 2258. 

3c: These NMR spectra compared favorably with that reported in Synth. 

Commiin. 1993, 3037. 

3d: 'H NMR (CDCI3): 5 0.91 (t, 3H), 1.22 (s, 3H), 1.54 (q, 2H), 2.77 (bs. 

IH), 4.35 (dd, 2H). '^C NMR (CDCI3): 5 8.1 (s, CHs-CH.), 24.0 (s, CH3-

CH), 32.7 (CH,-CH3), 72.1 (s, C-OH), 84.1 (s, CH.-NO.). 

3e: 'H NMR (CDCI3): S 0.88 (t, 6H), 1.52 (q. 4H), 2.65 (bs, IH), 4.39 (s, 

2H). ''C NMR (CDCI3): 6 7.8 (s, CHj-CH.), 29.2 (s, CH,-CH3), 74.6 (s, Q-

OH), 82.5 (s, CH0-NO2). 

3g: Isolated as a mixture of diastereomers: 'H NMR (CDCI3): 5 0.87-0.97 

(dd, 3H), 1.18-1.43 overlapping region (9H), 1.49-1.66 three broad singlets 

(IH), 4.29-4.57 (dd,2H). '^C NMR (CDCI3): 5 15.0 & 15.3 (Me), 

cyclohexyl ring 21.3, 23.2, 25.3, 28.2, 30.2, 30.8, 34.6, 36.5, 38.5, 42.6; 

72.6, & 73.9 (s, C-OH), 84.8 (s, QH.-NO,). 
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3i: 'H NMR (CDCI3): 5 3.23 (s, IH), 3.77 (s. 3H), 4.39-4.58 (m, 2H), 5.32 

(dd, 2H), 6.88 (d, 2H), 7.26 (d, 2H). ''C NMR (CDCI3); 5 55.4 (s. Me), 

70.7 (s, C-OH), 81.3 (s, CH.-NO.), 114.4, 127.4, 130.5, 156.0. 

3j: 'H NMR (CDCI3); 6 3.31 (s, 3H), 4.50 (m, 2H), 5.55 (dd, IH), 7.56 (d, 

2H), 8.16 (d, 2H). '^C NMR (CDCI3): 5 70.1 (s, £-OH), 80.8 (s, CH.-NO,). 

124.3, 127.2, 145.3, 148.2. 

3k: These NMR spectra compared favorably with those reported in J. Org. 

Chem. 1967, 4134. 

31: 'H NMR (CDCI3): 5 0.91 (t, 6H), 1.68 -1.77 (m, IH), 2.56 & 2.57 (bs, 

IH), 4.00-4.06 (m, IH), 4.31-4.49 (m, 2H). NMR (CDCI3): 5 17.6 & 

18.6 (Me), 32.0 (s, £H(Me)2), 73.6 (s, £-OH), 79.5 (s, CH.-NO,). 

3n: The 'H NMR compared favborably with that reported in J. Org. Chem. 

1997, 62, 425. '^C NMR Compared favorably with that reported in 

Tetrahedron Lett. 1995, 36, 6531. 

3o: 'H NMR (CDCI3); 5 2.28 (s, 6H), 2.70 (bs, IH), 4.33-4.51 (m, 2H), 

5.58 (dd, IH), 7.02 (s, 2H), 7.27 (s, IH). NMR (CDCI3): 5 18.6 (s. Me), 

21.2 (s. Me), 68.1 (s, £-OH), 80.5 (s, CH.-NO.), 126.4, 129.6, 131.0, 131.4, 

136.1,136.6. Anal. Calcd. for C,oH,3N03: C, 61.53; H, 6.71; N, 7.17. 

Found C, 61.78; H, 6.77, N, 7.02; M.P..: 72 °C. 
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3p: Isolated as a mixture of diastereomers. 'H NMR (CDCI3): 5 1.33-1.40 

(d, 3H), 2.42, 2.76 (bs, IH), 2.80-2.92 (m, IH). 4.20-4.37 (m, 2H), 3.39-4.50 

(m. IH), 7.26. '^C NMR (CDCI3): 6 17.4 & 17.6 (s. Me), 43.6 & 43.9 (S, 

CH-Ph), 72.6 & 73.5 (s, C-OH), 79.5 & 79.6 (s, CH.-NO.), 127.6. 127.6, 

128.2, 129.0, 129.2, 142.1, 142.2. Anal. Calcd. for C,oH,3N03: C, 61.53; H, 

6.71; N, 7.17. Found C, 61.46; H, 6.69, N, 7.27; p.b.; 241 

3q; 'H NMR (CDCI3); 5 0.98 (s, 3H), 1.17-1.44 (m, lOH), 3.14 (bs, IH), 

4.31-4.62 (m, 3H). '^C NMR (CDCI3): 5 14.0 (s. Me), 22.6 ( s, C-7), 25.2 

(s, C-6), 29.0 (s, C-5), 31.7 (s, C-4), 33.8 (s, C-3), 68.9 (s, C-OH), 80.8 (s, 

CH.-NO.,). 

3r; Isolated as a mixture of diastereomers. 'H NMR (CDCI3): 5 0.83-1.83 

overlapping region (13H), 2.27 (t, 2H), 2.40 (bs. IH), 4.27-4.53 (m, IH). 

'^C NMR (CDCI3): 5 13.7 (s. Me), 21.3, 25.1. 25.4, 27.2, 33.2, 35.1, 42.1, 

71.7 (s, C-OH), 91.2 (s, CH.-NO.). 

3s: Isolated as a mixture of diastereomers. 'H NMR (CDCI3): Compared 

favorably with that reported in J. Chem. Soc., Perkins Trans 2 1982, 867. 

'^C NMR(CDCl3): 11.8, 15.0, 16.2, 18.4, 18.7, 19.7, 29.5, 30.8, 77.1 & 

77.4 (s, C-OH), 84.6 & 86.5 (s, CH.-NO,). 
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3t: The 'H NMR compared favorbaly with that reported in Helv. Chim. Acta 

1979, 62, 2258. NMR (CDCI3): 6 98.6, 71.7, 42.0, 35.2, 33.7, 27.0, 25.0. 

21.5, 21.3,21.0, 10.6. 

3u; The 'H NMR compared favorably with that reported in Helv. Chim. 

Acta 19S2, 65, 1101. 

3v: The 'H NMR compared favorably with that reported in Tetrahedron 

1996, 52, 1677. NMR (CDCI3); 5 94.6, 94.1, 72.4, 72.0, 33.5, 33.3. 31.7. 

29.1, 29.1, 25.6, 25.2, 23.8, 22.6, 21.7, 10.5, 10.2. 

3w: 'H NMR (CDCI3): 5 3.99 (t, IH), 2.64 (two b s, IH), 1.56 (s, 3H), 1.54 

(s, 3H), 1.22 - 1.5 (m, lOH), 0.89 (t, 3H). ''C NMR (CDCI3): 5 92.3, 76.0, 

31.8, 31.5, 29.1, 26.4, 23.6, 22.6, 20.3, 14.1. b. p. 176-178 °C. 

3x: 'H NMR (CDCI3): 5 7.34-7.37 (overlapping region, 5H), 5.26 (d, IH), 

2.70 (bs, IH), 1.55 (s, 3H), 1.43 (s, 3H). '^C NMR (CDCI3): 5 138.2, 128.7, 

128.3, 127.5, 92.2, 78.0, 24.4, 19.0. m.p. 62-63 °C. 

4a: The M.P. compared favorably to that reported in J. Chem. Soc. 1947, 

1517. 'H NMR (CDCI3): 6 1.45-1.55 overlapping region (lOH), 4.62 (s, 

4H). '^C NMR (CDCI3): 6 21.0, 25.2, 31.6, 41.9 [s, C (CH.-NO,).], 79.1 (s, 

CH2-NO2). 

4b: 'H NMR (CDCI3): 5 1.63-1.66 overlapping region (4H), 1.74 (m, 4H), 

4.57 (s, 4H). NMR (CDCI3): 5 24.4 (s, CH.CHa), 34.7 (s, CH.C), 46.3 
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[s, C (CH,-NO. )2], 79.3 (s, CH.-NO,). Anal. Calcd. for C 

44.68; H, 6.43; N, 14.89. Found C, 44.83; H, 6.42, N, 14.71. 

4c: The B.P. compared favorably to that reported in J. Chem. Soc. 1947, 

1517. 'H NMR (CDCI3): 5 1.17 (s, 6H), 4.49 (s, 4H). ''C NMR (CDCI3): 5 

23.7 (s. Me), 36.3 [s, £ (CH.-NO,).], 81.9 (s, CHo-NO.). 

4d: The B.P. compared favorably to that reported in J. Chem. Soc. 1947. 

1517. 'H NMR (CDCI3): 5 0.92 (t, 3H), 1.09 (s, 3H), 1.39 (q, 2H), 4.52 (dd. 

4H). ''C NMR (CDCI3): 5 7.6 (s, £H3CH2), 20.3 (s, CH3C), 38.9 [s, C 

(CH.-NO.).], 80.1 (s, CH.-NO,). 

4e: The M.P. compared favorably to that reported in J. Chem. Eng. Data 

1966. 617. 'H NMR (CDCI3): 5 0.90 (t, 6H), 1.43 (q, 4H), 4.55 (s. 4H). ''C 

NMR (CDCI3): 5 7.1 (s, £H3CH.), 24.5 (s, CH.C), 41.9 [s, C (CH.-NO.)J, 

77.9 (s, CH.-NO3). 
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CHAPTER? 

P(RNCH,CH2)3N: AN EFFICIENT PROMOTER FOR THE DIRECT 

SYNTHESIS of £^-a,P-UNSATURATED ESTERS AND THE SYNTHESIS 

OF 3-SUBSTITUTED COUMARINS 

A paper submitted to the Journal of Organic Chemistry^ 

Philip Kisanga,''-'' Bosco D'Sa,'^ Xiangshu Fei® and John Verkade'" 

Abstract 

Upon reacting ethyl acetate or methyl propionate with a variety of 

aromatic aldehydes in the presence of 1.06-1.2 equiv of the pro-

azaphosphatranes, P(MeNCH2CH2)3N, P(i-PrNCH2CH2)3N or [P(/-

PrNCH2CH2)2(NHCH2CH2)N at 40-50 °C for 2-6 hours in isobutyronitrile, the 

corresponding a,P-unsaturated esters were formed as the only products. Ethyl 

acetate reacts with aldehydes to form exclusively E-isomers while the higher 

homologue methyl propionate gives rise to a mixture of E and Z isomers with 

the former as the major product. When used as the solvent, methyl propionate 

^ Reproduced with permission from Journal of Organic Chemistr>'. Copyright 1999, American Chemical 
Society. 
" Graduate student and University Professor, respectively, Depanment of Chemistry, Iowa State University. 

Primary researcher and author. 
** Schering-Plough Research Institute, 1011 Morris Avenue. Union, NJ 07083. 

Postdoctoral research associate. Department of Chemistry, Iowa State University. 
' Author for correspondence. 
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selectively forms the E-ajP-unsaturated ester. The reaction is not as successful 

for the preparation of a,P-unsaturated ketones. The efficacy of this 

methodology in the synthesis of coumarins is also demonstrated. 

Introduction 

The most commonly used strategy for the preparation of a,P-unsaturated 

esters is the Wittig reaction and its modifications devised by Homer. Wadsworth 

and Emmons.' Although these reactions are widely used, their major drawback 

is the need for the preparation of intermediates of the type [PhjPCH^RJ^X and 

(Et0)2P(0)CH2C02R from the corresponding halogenated reagents. These 

intermediates are then deprotonated by means of an ionic base, such as NaH," '' 

LDA\ f-BuOK," n-BuLi~ or potassium carbonate,"* or a nonionic base, such as 

an amine,^ to form the corresponding ylids. These two-step procedures produce 

substantial amounts of chemical waste in the preparation of a simple 

unsaturated ester, and also involve the cost and time required to prepare these 

intermediates. Several organometallic catalysts, such as RuCl2(PPh3)3^, 

ReOCl3(PPh3)3^'^, Sn(0S02CF3)2^, and Bu3Sb,^ have also been employed to 

convert aldehydes into a,P-unsaturated esters. However, the use of heavy 

metal catalysts introduces environmental concerns. Moreover, these procedures 

rarely produce a single isomer.^"' The Ru, Re and Sb compounds require the 



www.manaraa.com

147 

use of ethyl diazoacetate which is explosive, and trialkylstibenes are 

pyrophoric.^ Other variations of the Wittig approach that have been employed 

include the reaction of ylids on silica gel under microwave conditions,the use 

of pentacoordinate spirophosphoranes," and taking advantage of activated 

alumina" to promote coupling between the Wittig reagent and the aldehyde, to 

name but a few. These approaches proceed with moderate to high yields, 

require prior preparation of the intermediates and rarely produce a single 

isomer. 

Peterson olefination'" has also been used for the synthesis of 

disubstimied f'-ttjP-unsamrated esters. However, most of the variations of this 

reaction require elevated temperatures and they provide only modest yields.'^ 

Although the Wittig reaction and its Peterson and Julia-Lithgoe'"* modifications 

are very useful for preparing disubstimted E-a,P-unsamrated esters, their 

general failure in inducing good stereoselectivity in the preparation of 

trisubstituted a,p-unsaturated esters has remained a major draw-back.'^ The 

Julia-Lythgoe reaction has been less frequently used because it employs toxic 

sodium/mercury amalgam in the reductive cleavage step, although altematives 

such as samarium iodide-mediated reductive cleavage have recently been 

introduced. 1 -Alkoxycarbonylalkylidenetriphenylarsoraneshave been 
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employed to address the stereoselectivity problem in the formation of 

trisubstituted £-a,P-unsaturated esters. Although this strategy is successful in 

producing the E-tribustituted a,P-unsamrated esters in 64-95% yields, the 

toxicity of arsenic compounds makes this methodology less attractive. 

In recent years, several transition metal compounds have been used in the 

preparation of E-a,P-trisubstimted unsamrated esters. These include the 

reaction of phenyl iodide with methyl methacrylate in the presence of NaHCOj, 

PdCln, and PEG-800 in DMF at 120 °C for 6 h to afford the E-esters in 

moderate yields;'^ a Pd-catalyzed Heck'® reaction and the use of alkenyl and 

aryl boronic acids in a Pd-catalyzed transformation.'^ The toxicity of DMF 

and the high temperature required in the PEG-800 reaction is disadvantageous, 

however. The aforementioned Pd-catalyzed reactions also lead to mixtures of 

products and require long reaction times (up to 24 hours). A reported process 

using aryl iodides and acrylates also requires a relatively high temperature (130 

°C), the presence of platinum complexes and a reaction time of 24 hours to 

afford moderate conversions (26-90%) and selectivities (40-95%).-° 

Since our first report of the pro-azaphosphatrane la,"' the efficacy of this 

compound as a catalyst or promoter for a variety of reactions has been 

demonstrated in a series of reports from our laboratories."^"^' Catalysts of type 1 
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have been employed in the synthesis of a,P-unsatiirated nitriles,"^ 

glutaronitriles,'^ P-hydroxy nitriles,"® P-nitroalkanols,~^ homoallylic alcohols,"^" 

conjugated dienes from methylene-intemipled double bond systems.^'' Michael 

addition reactions^'^ and silyl ethers,^® and also in the acylation and 

transesterification of alcohols.^ ̂ The more basic analogues lb""" and lc~^ have 

been shown to be even more effective in some of our more recent smdies"^-^ as 

well as in the present one. On the other hand, lb has proven to be 

advantageous in reactions requiring longer reaction times, such as the synthesis 

of homoallylic alcohols via the alkylation of aldehydes,"^'' wherein both la and 

Ic failed to effect better conversions. 

We report here that bases of type 1 also efficiently deprotonate ethyl 

acetate to afford enolates that add to aldehydes to produce the corresponding E-

a,(3-unsaturated esters. We also report the promotion by lb of the direct 

condensation of aromatic aldehydes and methyl propionate to form the 

trisubstituted f-methyl aery late as the sole product. To our knowledge, this is 

the first report in which important transformations of this type have been 

la. R = Me 
lb, R = /-Pr 

1c 
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effected directly or in which they have been induced by a nonionic base. We 

also report here the use of this methodology for the synthesis of coumarins. 

Results and Discussion 

Because of the broad range of reactions catalyzed by compounds of type 

1.-'^' we believed that such bases might be capable of deprotonating ethyl 

acetate (2a) and that the resulting enolate would add to aldehydes to produce P-

hydroxy esters that would then undergo dehydration to afford the corresponding 

a,P-unsaturated esters (equation 1). We were disappointed, however, when 

only the starting aldehyde 3a was recovered in reactions in which benzaldehyde 

ArCHO + R'CHaCOaR" + ^^2° C) 

2a R" = H, R" =Et '*0*50 °C , 6 h R' 
3 2b R'= R" = Me 4 R' = H, R" = Et 

5 R- = Me. R"= Me 

3a 3b 3c 3d 3e 3f 3g 

CHO 

NMe2 
3h 3i 3j 3k 31 3m 3n 

(3a) was reacted with ethyl acetate (2g) at 30-40 °C using 20 mol % of lb in the 

presence of THF for 6 hours. Reactions in ether, benzene, and pentane gave 
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similar results (Table 1). Although the reaction in ethyl acetate (2a) was 

encouraging (28% conversion to the desired product), we were disappointed to 

observe an overall 56% conversion to a 1:1 mixture of the desired product and 

the intermediate ^-hydroxy ester. Upon extending the reaction time to 12 

hours, the product mixture consisted of 37% of the desired product and 13% of 

the intermediate alcohol. By contrast, a reaction monitored by ^'P NMR 

spectroscopy indicated that the base (lb) was completely converted to IbH"^ 

after 4 hours at 40 °C. Since the a-methyl group in ethyl acetate is more acidic 

than the hydrogens in acetonitrile by about three-fold,^" we thought that perhaps 

the preferential deprotonation of the ester in acetonitrile might favor a,P-

unsaturated ester formation. Experimentally, however, the reaction of 3a with 

2a in acetonitrile in the presence of lb gave the (^-hydroxy nitrile (66% 

conversion) as the major product (Table 1), while showing only a 20% 

conversion to the desired a,P-unsaturated ester as estimated by 'H NMR 

integration. Therefore, we elected to try isobutyronitrile (also a polar nitrile) as 

the solvent, since its addition to aldehydes would be less favored (see later) 

because of its greater steric hindrance. At the same time, we expected to 

maintain the strong basicity of the pro-azaphosphatranes~^"^^ (pK^ -33.6 for la 

in acetonitrile^^'') by using a nitrile solvent. A perhaps more convincing reason 
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to use a nitrile solvent was our observation that the protonation of lb is not 

detectable by NMR analysis in neat dry methyl ethyl ketone or in dry acid-

free ethyl acetate. Furthermore, protonation of lb by either dry acid-free ethyl 

acetate or methyl ethyl ketone was not detected in dry at temperamres up 

to 40 °C for 1 h. On the other hand a solution of 60 mg of lb in 0.75 mL of a 

1; 1 mixture of dry CD3CN and methyl ethyl ketone instantaneously formed 

lb, IbH^, and IbD"^ in a ratio of 76:7:17 as shown by 'H NMR spectroscopy. 

A comparable ratio (81:5:14) was observed under similar conditions for a 1:1 

mixture of dry CD3CN and ethyl acetate. These observations are consistent 

with a higher basicity of lb in acetonitrile, and/or prior deprotonation of 

acetonitrile by lb with subsequent deprotonation of the ester or ketone by the 

"CHoCN ion that is produced. In a similar way, we found that a solution of lb 

in a 1:1 mixture of isobutyronitrile and ethyl acetate led to the formation of lb 

and IbH^ in a ratio of 84:16 in about 20 minutes. These experiments indicate 

either a stronger basicity of lb in this mixed solvent medium than in neat ethyl 

acetate, or that a proton transfer equilibrium is reached more rapidly via the 

IbH^ 
1bD^ 

H 
D 

Z 
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CH^CN or CMe^CN ion. In a competitive study, we found that only addition 

of CH^CN to 3a occurred in a 1:1 mixture of acetonitrile and isobutyronitrile. 

In contrast, less than 10% addition of isobutyronitrile to benzaldehyde (3a) 

occurs over 6 hours under identical conditions to form the correspoding P-

hydroxy nitrile. 

The reaction of 3a with ethyl acetate in the presence of isobutyronitrile 

and 20 mol % of lb resulted in only a 22% conversion as estimated by 'H 

NMR integration, and we attributed this to the stoichiometric nature of the 

reaction imposed by the inability of both OH' and the secondary P-alkoxy anion 

to deprotonate the azaphosphatrane cation IbH"^ appreciably." When the 

reaction of benzaldehyde (3a) with ethyl acetate was repealed in the presence of 

1.06 equiv of lb, a 96% yield of ethyl £-cinnamate as the only product was 

obtained (Table 2). The reaction of p-anisaldehyde (3d) proceeded in 73% yield 

(84% conversion) while /?-dimethylaminobenzaldehyde (3m) did not react under 

these conditions (Table 2). Although the relatively lower yield of product from 

3d is attributable to strong resonance stabilization induced by the p-methoxy 

group, the product yield is in the same range as those previously reported for 

this substrate for a variety of reactions."'^' The inability of p-dimethylamino-

benzaldehyde to react under our conditions is in accord with our previous 
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experience with this substrate in the attempted synthesis of its corresponding P-

hydroxy nitrile."^ The reaction of p-chlorobenzaldehyde (3c) on the other hand 

produced the corresponding a,P-unsamrated ester in excellent yield (Table 2). 

The reaction of methyl propionate (2b) was found to be less stereoselective, 

although the major product was the E-isomer (Table 2). Table 2 also shows 

that both lb and Ic are efficient bases for the preparation of unsamrated esters, 

but that probably because of its somewhat lower basicity,"^ la is less efficient. 

The production of some Z-olefin from 3d and the low conversion of 31 

(although comparable with recently reported results^ ®) was rather 

disappointing, spurring us to seek alternative conditions under which higher 

selectivities could be realized. We subsequently observed that the use of ethyl 

acetate as the solvent, although producing a mixmre of the corresponding E-

a,3-unsaturated ester and 3-hydroxy ester (Table 1), failed to produce 

detectable amounts of the Z-isomer. When an acid-free sample of ethyl acetate 

was used as the solvent, the conversions using 0.2 and 0.5 mole equiv of lb in 

separate reactions were found to be 30% and 19%, respectively, in 6 h at 50 °C 

(Table 3). With 1.2 equiv of lb, however, the conversion was quantitative over 

6 h at 50 °C (Table 3). This table also shows that neither la nor Ic efficiently 

promote the preparation of the £'-a,P-unsaturated esters in ethyl acetate. Lower 
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yields with Ic are attributed to the requirement of elevated temperatures at 

which this base is relatively unstable with respect to oligomerization"^ 

compared with lb, while lower yields with la are attributable to its lower 

basicity. The efficacy of our methodology is demonstrated by the superior 

yields and selectivities compared with those reported by Kayser et al.^ (36-

95% yields, 100:0 to 70:30 E:Z ratios), Fujimura et al. (85-92% yields, >99:1 to 

90:10 E:Z ratios)^ and Sano et al.^ (29-100% yields, 100:0 to 6:94 £;Z ratios). 

The reactions of the aliphatic aldehydes 3i and 3h produced none of the 

expected unsaturated ester, and no starting material is either recovered or 

observed in a 'H NMR-monitored reaction after 4 h. The unpredictable 

reactivity of 3h is not surprising and is in accord with our previous findings,'^"' 

but the inability of 3i to afford the desired unsaturated ester is unexpected. 

However, in another study, we found that y-alkyl and Y,Y-dialkyl substituted 

a,P-unsaturated nitriles are able to dimerize and oligomerize in the presence of 

bases of type l.~^ We have recently found that some enones (e.g., 2-

cyclohexenone, 4-hexen-3-one, methyl vinyl ketone and mesityl oxide) and y-

alkyl-a,p-unsaturated esters (e.g., ethyl £-crotonate) exhibit similar 

dimerization or oligomerization behavior."^'' In the reactions of the two 

substrates 3h and 3i, we observed that like ethyl E-crotonate,^^*^ they 
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oligomerize in the presence of lb. Perhaps, the corresponding a,P-unsaturated 

ester produced oligomerizes upon formation. Although 3f is somewhat 

sterically hindered and also experiences reduced reactivity because of possible 

resonance with the o-methoxy group, the desired unsaturated ester is produced 

in 82% yield. 

Motivated by these results, we explored the selectivity of reaction 1 for 

the synthesis of trisubstituted a,P-unsaturated esters. In the presence of 1.06 

equiv of lb at 50 °C, benzaldehyde (3a) reacted with 2b in 6 h to provide a 

95% conversion to the corresponding trisubstituted a,P-unsaturaied ester as the 

sole product as shown by TLC, 'H and NMR analyses. In the presence of 

1.2 equiv of lb the reaction was quantitative. The reactions of of 4-

fluorobenzaldehyde (3b) or 4-chlorobenzaldehyde (3c) with methyl propionate 

(2b) at 50 °C for 6 hours were quantitative and afforded single products as well. 

Comparison of the NMR spectra of these products to those reported in the 

literamre^^ showed that we obtained the E-isomer'^'' of the expected esters with 

excellent selectivity. We therefore repeated the reaction for a variety of 

aldehydes and the results of these experiments are shown in Table 4. This table 

shows that in addition to excellent selectivity, the isolated yields range from very 

good to excellent with the exception of p-anisaldehyde (3d) which gave a 
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Scheme 1 

B+ R'CHaCOOR BH*+ R'CHCOOR' ArCHO 
Ar + BH"^ 

COOR 

^OOR 
+ BH(OH) 

Ar 

R" 
COOR" 

moderate yield, and p-dimethyaminobenzaldehyde (3in) which does not react 

under our conditions. The use of molecular sieves in these reactions proved 

fruitless. The superiority of our methodology is also evident from the high 

conversions and isolated yields obtained in the reaction of 2b with the sterically 

hindered aldehydes 3e and 3g to form the corresponding new trisubstituted E-

a,(3-unsaturated esters. 

The proposed pathway of this reaction shown in Scheme 1 is initiated 

with a pre-equilibrium that lies far to the left. This assumption is substantiated 

by the aforementioned experiments in which no detectable protonation of lb is 

observed in neat ethyl acetate or methyl ethyl ketone. Indirect support for this 

assumption lies in our observation that the addition of lb to dry CD3OD, a 

more acidic solvent, for up to 6 h leads to only 8-10% deuteration. The 

unfavorable pre-equilibrium in the first step of Scheme 1 
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therefore requires a comparatively large amount of the base in order to 

accelerate the reaction. In Scheme 1, both the secondary P-alkoxide and the 

hydroxide anion are relatively weak bases that are unable to deprotonate the 

protonated base appreciably." 

Since the a-protons of ketones are more acidic than those of esters,^® we 

expected bases of type 1 to catalyze a cross-aldol condensation between ketones 

and aldehydes. Because of the sterically hindered nature of the pro-

azaphosphatranes, we believed they would be able to regioselectively 

deprotonate the less hindered methyl protons in methyl ethyl ketone. However, 

in the presence of Me^CHCN, ether or THF as the solvent, the reaction mixture 

showed no upfield signals in the 'H NMR spectra that could be attributed to the 

expected product (PhCH:CHCOEt) although all of the aldehyde was consumed. 

We attribute this to the strong basicity of lb which may induce self-

condensation of the ketone. When the amount of the base was decreased to 0.2 

equiv, the same reaction pattern was observed with both la and lb. However 

in benzene, a 31% conversion to the olefin was observed with la in about 30 

minutes. This product was isolated by column chromatography to afford a 

23% yield of (E)-PhCH:CHCOEt. Reaction mixtures produced by lb under 

similar conditions were complicated and revealed that all the aldehyde was 
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consumed. Attempts at increasing the time of the reaction utilizing la to over 1 

h led to the formation of unidentifiable materials which gave a continuum of 

spots on TLC analysis. Increasing the amount of la to more than 20% led to an 

instantaneous disappearance of the aldehyde but no detectable amounts of a,3-

unsaturated ketones. The foregoing argument implying a possible 

oligomerization of Me3CCHCHCOOEt does not seem to apply here because of 

our observation that PhCH=CHCOMe is stable in the presence of bases of type 

1. The consumption of the aldehyde without the formation of the expected 

unsaturated ketone was observed even when the reaction was attempted at -78 

°C. This reaction is under further investigation in our laboratories. 

Synthesis of coumarins 

With the success of the methodology shown in equation 1, we attempted 

to apply an intramolecular version of this reaction to the synthesis of coumarins. 

This class of compounds has recently been prepared by Cartwright et al. by flush 

vacuum pyrolysis^^ in an attempt to circumvent the variable yields and 

inconvenient workups encountered in Wittig olefination-cyclizations.^^ More 

recentiy, a ihodium-catalyzed process^® has been introduced that produces a 

mixmre of coumarins and benzofiirans in variable yields. 
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The required salicyladehyde 2-carboxylates were prepared according to a 

published method^' as shown in step one of Scheme 2. Crude 8a and 8b were 

then used in an intramolecular olefination using lb as a promoter. 

Scheme 2 

. (RCOteO "•"""""'l,'' fX°T° 
W^CHO ^^CHO CeHs epoc.ah 

g 7a R = Me -
7b R = Et 8a R = Me 87% 9a R = H 71 % 

8b R = Et 93% 9b R = Me 67% 

When 8a was reacted with 1.2 equiv of lb at 40 ®C for 3 h, a 50:50 mixture of 6 

and 9a was observed in the reaction mixture. A similar product mixture was 

obtained with 8b. Decreasing the amount of lb to 0.5 or 0.4 equiv gave an 

identical product mixture. Further reduction in the amount of lb to 0.3 equiv 

resulted in an incomplete reaction. Therefore, we assumed that 0.4 equiv of lb 

was an optimum amount of lb required for the reaction. When we attempted to 

increase the reaction temperamre to 60 °C or to use magnesium sulfate (a 

Lewis acid we have found to be compatible with bases of type 1), over 70% 

deacylation to 6 was observed. When 4 A molecular sieves were added in a 

repetition of the reaction at 40 °C for 3 h in the presence of 0.4 equiv of lb, 

71% and 67% of the coumarins 9a and 9b, respectively, were isolated, while 

the remaining starting material in each case (8a and 8b, respectively) was 

deacylated to 6. The deacylation of 8 is assumed to proceed through the 
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pathway shown in Scheme 3. Such reactions have recently been studied in our 

laboratories in a different context.^' Although the isolated yields of the 

coumarins synthesized herein are not superior to those reported by Cartwright/^ 

the methodology represents a more simple and convenient alternative to 

pyrolysis or Wittig olefination-cyclization. 

The Knoevenagel condensation has often been used to prepare 3-

substituted coumarins. Highly efficient reactions have recently been reported 

involving the condensation of salicylaldehydes with malonates in the presence 

of piperidine under microwave conditions/®" and the use of montmorillonite 

KSF.^°'' Both strategies produced this class of compounds in yields up to 94%"*° 

and 92%, respectively. However, the temperature at the end of the 10-minute 

microwave reaction is 120 and the montmorillonite process requires 

reaction at 100 °C for 24 h.'"^ When we attempted the reaction of 

salicylaldehyde with diethyl malonate in the presence of 1.0 equiv of lb in 

benzene or isobutyronitrile, the isolated yield of 10 was 84% (Scheme 4). 

Increasing the amount of lb to 1.5 equiv and the quantity of diethyl malonate to 

1.2 equiv led to the isolation of 94% of the desired product 10. Although this 

+ IbH 
8 8c 8d 
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result is more favorable than that reported in the literature"*® owing to the lower 

temperature we employ (50 °C), the relatively large amount of lb (1.5 equiv) 

required coupled with the inability of ethyl cyanoacetate to afford a 

Scheme 4 O 

ll-OEt 1 equiv lb 

C6H6or>-CN 
50°C. 3h, 84% 10 

high conversion to the corresponding coumarin (-20%) as determined by 'H 

NMR integration were disappointing. The latter result may be associated with 

the configuration of the solvated intermediate Knoevenagel product (11) in 

isobutyronitrile, whose geometry could be unfavorable for the formation of 

o 

00  ̂OEt 

11 

Scheme 5 
5 mol % lb neat 

/ 60 °C, 7 h 

R OEt \ 5 mol % Ib/EtOH 
12 ^3 60 °C 3-4 h 

= C02Et, COMe. ON 

the desired coumarin. A solution to this apparent problem was realized by 

employing either a neat reaction or using ethanol as the solvent. Under these 

conditions, a catalytic reaction occurred in the presence of 10 mol % of la or 
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lb to afford the desired coumarins as the only products in high yields (Scheme 

5 and Table 5). 

It should be mentioned that the reaction of either 6 or its substituted 

analogues 12 with ethyl acetate or methyl propionate under the conditions in 

Scheme 5 did not afford detectable amounts of the desired coumarins 9a or 9b, 

respectively. While the yields in Table 5 are competitive with those reported in 

the literature/" the mild conditions and the shorter reaction times in our 

methodology constitutes a more practical alternate route to coumarins. 

Conclusion 

We have shown that the pro-azaphosphatrane lb is an efficient base for 

the direct synthesis of a,P-unsaturated esters from the corresponding aldehydes 

and esters in excellent ^-stereoselectivity. This reaction can be carried out in 

isobutyronitrile as a solvent or in the presence of excess dry acid-free ester as 

the reactant and solvent. The reaction of methyl propionate with aldehydes 

gives the corresponding trisubstituted a,P-unsaturated esters with excellent E-

selectivity. Since the base can be efficiently recovered for recycling (see 

Experimental Section) the only waste product in reaction 1 is water. 

Compounds la and lb can also be used as a promoters for the synthesis of 

coumarins in a superior manner. 
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Experimental Section 

All reactions were carried out under nitrogen. The esters (ethyl acetate 

and methyl propionate) were purchased from Aldrich chemical company and 

were dried according to standard procedures"*' and then stored under nitrogen 

over 4A molecular sieves. The bases la-lc were prepared according to 

previously reported methods*'"^ although la is commercially available (Strem). 

Procedure for the preparation of a, ̂-Unsaturated Esters in MejCHCN 

In a typical experiment, 2.00 mmol of the aldehyde was dissolved in 

isobutyronitrile (2.0 mL) in a small flask preflushed with nitrogen. A solution 

of 2.10 mmol of 1 ( 449 mg of la, 636 mg of lb or 547 mg of Ic) in 1.0 mL of 

isobutyronitrile was then prepared in another flask under nitrogen. To this 

solution was added 2.1 mmol of the ester (ethyl acetate or methyl propionate). 

This solution was then added to the solution of the aldehyde and stirring was 

continued while the mixture was warmed under the conditions stated in Table 

2. At the end of the reaction time the reaction mixture was allowed to cool to 

room temperature. The crude reaction mixture was then loaded onto a small 

silica gel column and column filtered with 100% ether. The crude product was 

purified when necessary by fractionation on a silica gel column using an eluent 
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system consisting of hexane and ethyl acetate. The esters eluted with 30% 

EtOAc in hexane. The esters from 3f, 31, 3n did not separate well with the 

ethyl acetate/hexanes eluent system and were thus eluted with a hexanes/ethyl 

ether solvent system, eluting at 40% ether in hexanes. 

Procedure for the Preparation of a,^-Uiisaturated Esters in Ethyl Acetate 

In a typical experiment 2.10 mmol of 1 (449 mg of la, 636 mg of lb or 

547 mg of Ic) was dissolved in dry ethyl acetate (2.0 mL) in a small flask 

preflushed with nitrogen. The solution was warmed at 50 °C for 2 minutes. To 

this solution was added 2.00 mmol of the aldehyde and the mixture was stirred 

for 6 h at 50 °C. After cooling to room temperature, the crude product was 

loaded onto a small silica gel column and column filtered with 100% ethyl 

ether. When necessary, purification was achieved as detailed above. 

Procedure for the Preparation of a,3-Unsaturated Esters in EtCOjMe 

In a typical experiment 2.40 mmol of lb (720 mg of) was dissolved in 

dry methyl propionate (2.0 mL) in a small flask preflushed with nitrogen. The 

solution was warmed at 50 °C for 2 minutes. To this solution was then added 

2.00 nmiol of the aldehyde and the mixmre was stirred for 6 hours. The 

process was continued as stated above for ethyl actetate. 
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Procedure for the Synthesis of Coumarins 9a and 9b 

In a typical experiment, 0.800 mol of lb (240 mg) was weighed in a 

small flask followed by the addition of 2.0 mL of dry isobutyronitrile or 

benzene. Into another flask containing activated 4A molecular sieves under 

nitrogen was syringed 1.0 mL of the solvent (isobutyronitrile or benzene) 

followed by 2.00 mmol of the 2-salicylaldehyde alkyl carboxylate (328 mg of 

8a or 356 mg of 8b). The second flask was warmed to 40 °C for 2 minutes 

followed by the addition of the contents of the first flask by means of a syringe. 

After stirring was continued for 3 hours, the reaction mixture was allowed to 

cool to room temperature and then flushed through a small silica gel column 

with 5% methanol in ethyl ether. Removal of the solvent under reduced 

pressure afforded the crude coumarins which were fractionated on a silica gel 

column with an eluent system made up of ethyl acetate in hexane. The ratio of 

ethyl acetate was increased in 5% increments and the coumarins eluted with 

about 25% ethyl acetate in hexanes to afford 71% of 9a and 67% of 9b, 

respectively. 
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General Procedure for the Preparation of Coumarins in the Presence of 

Catalytic Amounts of la or lb 

Method A. Neat Reaction 

2.00 mmol of the aldehyde 12, 2.40 mmol of the diactivated methylene 

compound 13 and 0.1 mmol of la or lb were mixed under nitrogen and heated 

at 60 °C for 7 h with continuous stirring. The reaction mixture was then 

allowed to cool to room temperature. The crude products were purified by 

eluting on a silica gel column using a 3:1 mixture of ethyl acetate and hexanes. 

The coumarins 14d, 14f, and 14j were purified by eluting on a silica gel column 

using a 3:1:1 mixture of hexane, ethylacetate and methylene chloride. 

Method B. Reaction in ethanoi 

2.00 mmol of the aldehyde 12 and 2.40 mmol of the diactivated 

methylene compound 13 were mixed under nitrogen. To this mixture was 

added 0.1 mmol of la or lb dissolved in 20 mL of absolute ethanol and then 

the reaction mixture was heated at 60 °C for 3-4 h (Table 5) with continuous 

stirring. At the end of this time, the reaction mixture was allowed to cool to 

room temperature and the solvent removed under reduced pressure. The crude 

products were purified as stated in Method A. 
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Catalyst Recovery 

After the reaction times given in Tables 2-4, the solvent was removed 

under reduced pressure and then the mixture was dissolved in the least amount 

of water and extracted with 5x20 mL portions of ether. The ether extracts were 

dried over anhydrous potassium carbonate and the solvent was removed under 

reduced pressure to afford the crude ester. The aqueous layer was then treated 

with 5 mL of 1.0 M HCl and extracted four times with 10 mL portions of 

methylene chloride. The combined extracts were dried over anhydrous 

magnesium sulfate followed by removal of the solvent under reduced pressure 

affording the protonated base in 81% yield. This base hydrochloride can be 

deprotonated according to our previously published methods."'"" "'' The yields 

of the a,|3-unsaturated esters obtained by this workup procedure are slightly 

lower (by about 5%) than those obtained by the colunm filtration method given 

above. 
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Table 1. The Reaction of benzaldehyde with ethyl acetate in different solvents 

and at various temperatures for 6 h in the presence of 20 mol % of lb 

solvent T(°C) % conversion" to 

ethyl cinnamate 

% starting material 

(3a)^ 

isobutyronitrile 40 22 78 

THF 40 0 100 

benzene 40 <1 100 

ether 30 0 100 

ethyl acetate 40 28 43 (28)"^ 

acetonitrile 40 20 13 (66)'^ 

pentane 30 <1 >99 

isobutyronitrile 30 15 85 

isobutyronitrile 50 24 76 

ethyl acetate 50 36 42 (22)"^ 

""Based on the aldehyde as estimated by NMR integration. 'The quantities in 

parentheses represent side products as estimated by 'H NMR integration. 

'"Conversion to P-hydroxy ester as estimated by 'H NMR integration. 

'^Conversion to ^-hydroxy nitrile as estimated by 'H NMR integration. 
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Table 2. The reaction of esters with aldehydes in the presence of 1.06 equiv of 

la-c"* 

starting materials base T °C / time (h) % yield'' 

(E/Z)= of 

product 

3a + 2a lb 40/2  96 (100:0) 

3a + 2b lb 40/2 91 (10:1) 

3c + 2a lb 40/2  95(100:0) 

3c + 2b lb 40/2  93 (9:1) 

3d + 2a lb 40/6 73(5:3) 

3d + 2b lb 50/6 40(1:1) 

3h + 2a lb 30/2 O'^ 

31 +2a lb 30/2 0" 

31 +2a lb 40/2 67 (100:0) 

3m + 2a lb 40/6 0 

3a + 2a la 40/2 83 (100:0) 

3a + 2a Ic 40/2 94(100:0) 

3d + 2a la 40/2 61 (2:1) 

3d + 2a Ic 40/2 75(9:4) 

''The reactions were carried out in isobutyronitrile as solvent. ""Isolated yield. 

''Determined by 'H NMR integration. ''None of the starting aldehyde was 

observed in the reaction mixture. 



www.manaraa.com

Table 3. Reactions of ethyl acetate (2a) with aldehydes in the presence of bases 

la-c=' 

aldehyde base T °C/tinie (h) % yield'' of E-

product 

3a Ib'^ 50/6 30 

3a lb-* 50/6  73 

3a lb 50/6  96 

3b lb 50/6  95 

3c lb 50/6 98 

3d lb 50/6 60 

3e lb 50/6 91 

3f lb 50/6 82 

3g lb 50/6 95 

3h lb 30/4^ 0 

31 lb 30/4= 0 

3j lb 50/6 96 

3k lb 50/6 96 

31 lb 50/6 88 

3m lb 50/18 0 

3n lb 50/6 98 

3c la 40/12 (89)' 

3c Ic 40/12 (82)' 

3d la 40/12 (50)' 

3d Ic 40/12 (55)' 
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Table 3 (continued) 

''The amount of 1 used was 1.06 equiv unless stated otherwise. ^Isolated yield 

after column chromatography. The amount of lb used was 0.2 equiv. '^The 

amount of lb used was 0.5 equiv. ®A11 the aldehyde was consumed after 4 h 

with no detectable formation of the expected unsamrated esters. ^Conversion as 

estimated by 'H NMR spectroscopy integration. 
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Table 4. The reaction of methyl propionate 2b with aldehydes in the presence 

of 1.2 equiv of lb 

substrate T (°C) /time (h) % yield of E-

product 

3a 50/6 93 

3b 50/6 93a  

3c 50/6 95 

3d 50/6 68 

3e 50/6 87 

3f 50/6 88 

3g 50/6 76 

3h 40/4 0 

3! 40/4 0 

3j 50/6 83 

3k 50/6 91 

31 50/6 64" 

3m 50/18 0 

3n 50/6 98 

"A trace amount of the Z-isomer was observed but was not separated from the 

major £"-isomer. 
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Table 5. Synthesis of coumarins in the presence of 5 mol % of la or lb 

product neat % % yield 
yield' in EtOH^ 
la lb la lb 

mp °C literature literature 
(recry. 

solvent) mp °C NMR 
data 

/XX. 

COaEt 

81 85 95= 93"= 

89 87 83 90 

85 92 87 90 

92 89 90 94 

80 77 81 76 

83 82 78 88 

79 87 75 81 

93 90 94 95 

88 95 94 90 

93 
(Et.O) 

121-123 
(EtOH) 

90-91 
(Et,0) 

150-152 
(EtOH) 

228-229 
(MeCN) 

115-116 
(EtOH) 

93-94-'-

124 4 1  

170-172 173-
(EtOH) 174-' 

,44 88-90 

151-
153-'' 

75-77 77-78 
(Et.O) 

229 i-»5 

115 47 

120-121 122-
(Et.O) 122.5^' 

'H 
NMR^-

'H 
NMR^' 

'H 
NMR-*^ 

'HNMR-* 
6 

'H 
NMR-*^ 
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Table 5 (continued) 
79 87 80' 85" 187-188 190^' 'H 

(DMSO) NMR^' 

93 90 95 96 294-296 298- 'H 
(DMSO) 299-'® NMR-'' 

14i 

CN 

i4L 
The reaction time was 7 h. The reaction time was 3 h unless stated otherwise. 

The reaction time was 4 h. '^No NMR data are reported (see Supporting 

Information). 
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Supporting Information 

NMR and NMR spectral data with peak Assignments 

4a: The 'H NMR spectrum compared favorably with that reported in 

Tetrahedron Lett. 1997, 37, 1947. The '""C NMR spectrum compared 

favorably to that reported in J. Org. Chem. 1986, 52 , 3535. 

4b: The NMR spectrum compared favorably to that reported in Aiist. J. 

Chem. 1982, 35, 729. The '^C NMR spectrum compared favorably to that 

reported in Can. J. Chem. 1969, 47, 3137. 

4c: The 'H NMR spectrum compared favorably to that reported in Aiis. J. 

Chem. 1982, i5, 729. ''C NMR (CDCI3): 5 166.7, 143.1, 136.1, 133.0, 

129.2, 129.1, 118.9, 60.6, 14.3. 

4d: The 'H NMR spectrum compared favorably to that reported in Synth. 

Commim. 1988, 1349. The '^C NMR compared favorably to that reported 

in Acta Chem. Scand., Ser. B. 1981, 35, 419. 

4e; The 'H NMR spectrum compared favorably to that reported in Can. J. 

Chem. 1969, 47, 3137. The '^C NMR spectrum compared favorably to 

that reported in J. Org. Chem. 1986, 52, 3535. 
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4f: The 'H NMR spectrum compared favorably to that reported in Can. J. 

Chem. 1969, 47, 3137. The NMR spectrum compared favorably to 

that reported in Acta Chem. Scand., Ser. B. 1981, 419. 

4g; The 'H NMR spectrum compared favorably to that reported in Can. J. 

Chem. 1969, 47, 3137. The '^C NMR spectrum compared favorably to 

that reported in Acta Chem. Scand. Ser. B. 1981, 35, 419. 

4j: The 'H NMR spectrum compared favorably to that reported in J. Org. 

Chem. 1995, 60, 8360. The NMR spectrum compared favorably to 

that reported in Synthesis 1988, 534. 

4k: 'H NMR (CDCI3); 5 7.91 (s, IH ), 7.80-7.86 (overlapping region, 4H), 

7.65 (dd, IH, J = 8.4, J = 2), 7.49 (m, 2H), 6.52 (d, IH, J = 16). 4.29 (q, 

2H), 1.353 (t, 3H). '^C NMR (CDCI3): 5 167.0, 144.6, 134.2, 133.2, 

131.9, 129.9, 128.6, 128.5, 127.7, 127.15, 126.6, 123.4, 118.4, 60.5, 14.3. 

41; 'H NMR (CDCI3): 5 7.44-7.49 (m, 3H), 7.31-7.40 (m, 3H), 6.80-7.30 

(overlapping region, 2H), 5.98 (d, IH, J = 15.3), 5.23 (q, 2H), 1.33 (t, 3H, 

y = 7.2 Hz). NMR (CDCI3): 6 167.1, 144.6, 140.4, 136.0, 129.0, 

128.8, 127.2, 126.2, 121.3,60.4, 14.3. 
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4n: The NMR spectrum compared favorably with that reported in 

Tetrahedron 1991, 47, 8443. The NMR spectrum compared 

favorably with that reported in Tetrahedron 1989, 45, 4103. 

5a: The 'H NMR spectrum compared favorably with that reported in 

Tetrahedron 1996, 52, 12313. ''C NMR (CDCI3); 5 169.2,139.0.135.9, 

129.7, 128.4, 128.3, 128.3,52.1, 14.1. 

5b: 'H NMR (CDCI3): 5 7.64 (s, IH), 7.37 (dd, 2H, J = 5.4 Hz, J = 8.4 Hz), 

7.05-7.11 (overlapping region, 2H), 3.82 (s, 3H), 2.1 (d, 3H, J = 1.2 Hz). 

NMR (CDCI3): 5 169.1, 164.2, 160.0, 137.8, 131.6, 115.5 (d, J = 21 

Hz), 52.1, 14.0. 

5c: The 'H NMR spectrum compared favorably with that reported in J. Org. 

Chem. 1974, 40, 3866. ''C NMR (CDCI3): 5 168.9, 137.6, 134.3, 134.2, 

130.9, 128.9, 128.7, 52.2, 14.1. 

5d: Both of these spectra compared favorably with that reported in Indian J. 

Chem.  1992 ,613.  

5e: 'H NMR (CDCI3): 6 7.84 (s, IH), 7.29 (AB q, 2H), 6.90-6.97 

(overlapping region, 2H), 3.85 (s, 3H), 3.81 (d, 3H, J = 1.5 Hz), 2.05 (d, 

3H, J = 1.5 Hz). NMR (CDCI3): 5 169.1, 157.6, 134.9, 130.2, 129.8, 

128.3, 124.8, 120.1, 110.5, 55.5, 52.0, 14.2. 
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5f: 'H NMR (CDCI3): 5 7.80 (s, IH), 6.83-6.86 (overlapping region, 3H), 

3.76-3.81 (overlapping region, 6H), 3.73 (s, 3H), 2.06 (d, 3H, J = 1.2 Hz). 

'^C NMR (CDCI3): 5 169.0, 153.0, 152.0, 134.7, 128.7, 125.6, 116.1, 

114.3,111.5,56.0,55.8,52.0, 14.3. HRMS: CalcdfovC^jH.^O^ 

236.10490, found m/e (M") 236.10509. 

5g; 'H NMR (CDCI3); 5 7.73 (s, IH), 7.09(d. IH), 7.01-7.04 (overlapping 

region, 2H), 3.82 (s, 3H), 2.32 (s, 3H), 2.23 (s, 3H), 1.96 (s, 3H). 

NMR(CDCl3): 6 169.0, 138.6, 135.0, 134.9, 133.7, 130.0, 128.9, 

51: 'H NMR (CDCI3): 5 7.48 (d, 4H), 7.28-7.46 (overlapping region, 4H), 

7.05 (t, IH), 6.85 (d, IH, J = 15.6 Hz). ''C NMR (CDCI3): 5 168.8, 

139.1, 138.5, 136.6, 128.8, 128.7, 128.6, 127.1, 127.1, 123.9,51.9, 12.9. 

HRMS: Calcd for C15H14O0 226.0994, found m/e (M^) 226.0992 Anal. 

Calcd for CisH.^O^C, 79.61; H, 6.24. Found: C, 79.59: H, 6.24. 

5n: 'H NMR (CDCI3): 5 7.86 (s, IH), 7.48 (d, IH), 7.27 (d, IH), 7.11 (dd, 

IH), 3.81 (s, 3H), 2.21 (d, 3H, J = 1.2 Hz). ''C NMR (CDCI3): 6 169.0, 

139.2, 131.7, 129.2, 127.3, 124.6, 52.1, 14.3. 

9a: The 'H and '^C NMR spectra compared favorably to those reported in J. 

Chem. Res. (Synopsis) 1997, 296. 
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9b: The and NMR spectra compared favorably to those reported in J. 

Chem. Res. (Synopsis) 1997, 296. 

14b: 'H NMR (DMSO-^/^): 5 8.48 (s, IH), 7.17-7.30 (overlapping area, 3H), 

3.99 (s, 3H), 2.73 (s, 3H). ''C NMR (DMSO-^/e): 5 195.7, 159.1, 153.3, 

147.5, 136.0, 134.8, 130.7, 124.8, 118.4, 116.4, 30.6, 20.7. 

14c: 'H NMR (CDCI3): 5 8.50 (s, IH), 7.16-7.29 (overlapping region. 3H), 

4.41 (q, 2H), 3.97 (s, 3H), 1.408 (t, 3H). '^C NMR (CDCI3): 5 165.2, 

163.5, 157.6, 157.2, 149.0, 130.8, 114.2, 113.7, 111.7, 100.4,61.8, 56.1, 

14.4. 

14f: 'H NMR (DMSO-tiJ: S 8.46 (s, IH), 7.43-7.48 (overlapping region, 2H), 

7.26 (dd, IH), 2.73 (s, 3H), 2.43 (s, 3H). ''C NMR (DMSO-c^J: 5 195.7, 

159.1, 153.3, 147.5, 135.0, 134.8, 130.7, 124.9, 118.4, 116.4, 30.6,20.7. 

14h: 'H NMR (CDClj): 5 8.48 (s, IH), 7.39-7.46 (overlapping region, 2H), 

7.44 (d, IH), 4.41 (q, 2H), 2.43 (s, 3H), 1.41 (t, 3H). ''C NMR (CDCI3): 

5 163.2, 157.0, 153.4, 148.7, 135.6, 134.7, 129.2, 118.1, 117.7, 116.5, 

61.9, 20.7, 14.3. 
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CHAPTER 8 

P(RNCH2CH2)3N: EFFICIENT 1,4-ADDITION CATALYSTS 

A paper to be submitted to the Journal of Organic Chemistry 

Philip B. Kisanga,'^'' Palanichamy Ilankumaran'' and John G. Verkade'" '^ 

Abstract 

The 1,4-addition of alcohols, nitroalkanes and imines (derived from a-

amino esters) to a,P-unsaturated compounds has been achieved in moderate to 

excellent yields. These reactions proceed at room temperature in the presence 

of catalytic amounts of the nonionic strong bases P(RNCH2CH2)3N (R = Me, i-

Pr, z-Bu) in isobutyronitrile. The catalytic amount of base used is easily 

removed from the product by either column filtration through silica gel or 

through aqueous work-up. 

Introduction 

Michael addition is one of the most efficient and effective methods for 

the formation of C-C bonds.' This reaction has wide applications in organic 

^ Graduate student and University Professor, respectively. Department of Chemistry. Iowa Stale University. 
'' Primary researcher and author. 
•• Postdoctoral research associate. Department of Chemistry, Iowa State University. 

Author for correspondence. 
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synthesis" and several new versions of the reaction have recently been 

introduced.^ The Michael addition reaction of electron deficient alkenes has 

been used to produce difunctionalized compounds which have been used 

extensively in organic synthesis." 1,5-Diketones (prepared by the Michael 

addition of a-nitroketones to a,P-unsaturated ketones)^ are used to prepare 2-

cyclohexenones^ and 3-nitroketones can be reduced to 3-aniinoketones.' ̂  The 

nitro group can be denitrated^ giving rise to P-alkyl subsitution of the starting 

carbonyl compounds. 

The commonly used anionic alkyl synthons for Michael addition are 

those derived from nitroalkanes,® ethyl cyanocarboxylates,' and malonates.'° 

Although these types of Michael donors have been extensively studied, and 

their limitations (such as double additions,'^ requirement of large excess of the 

nitroalkane,'" restriction in the type of Michael acceptors allowed,'"* and the low 

to moderate yields encountered'"^have been largely overcome by newer 

methodologies, such approaches are by no means devoid of drawbacks. Among 

recent developments are the use of Amberlyst A-27'"^ and sodium hydroxide 

solution in the presence of cetyltrimethylammonium chloride (CTACl) as a 

cationic surfactant.'^ However, the Amberlyst A-27'"* process requires reaction 

times ranging from 4 hours (for MVK) to 25 hours for the reactions of higher 
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nitroalkanes with ^-substituted methyl vinyl ketones. The sodium hydroxide 

process'^ affords only modest yields in the reaction of secondary nitroalkanes 

even with MVK.'^ The yields in both processes range from moderate to high 

for most substrates. The Michael addition reactions of higher nitroalkanes to 

a,P-unsaturated carbonyl compounds generally proceed over lengthy reaction 

times and the yields are only moderate. Although reactions employing alumina 

are rapid, four equivalents of the rather expensive nitroalkanes are required.^'' 

Oxa-Michael addition reactions are rare despite the fact that such 

transformations produce protected 3-hydroxy carbonyl compounds that are of 

significant importance in organic synthesis. The few reports that exist 

include descriptions of UV irradiation of cycloalkenones in methanol to 

produce the j3-methoxy cyclic ketones; reactions promoted by NaOMe,'^'' 

KH,'"' and potassium r-butoxide;'^" and cynoethylation of alcohols by a Mg-Al 

hydrotalcite prepared in a process requiring 450 °C for up to 12 hours. 

Several other catalysts have also been used for the cyanoethylation of alcohols 

but their utilities have not been extended to other a,p-unsaturated 

compounds."®'''' Recently, vanadium complexes have been reported to induce 

hydroalkoxylation of a,P-unsamrated ketones and epoxides.'' However, the 

use of transition metals introduce environmental concerns. To our knowledge. 
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no general reaction has been reported in which P-alkoxy ketones can be 

prepared through a Michael addition reaction. 

The Michael addition reaction of the Imines of a-amino esters have long 

been known to be a convenient method for functionalizing a-amino esters at the 

a-position.-° However, this reaction has a propensity to undergo a competing 

cycloaddition."®'' The ratio of Michael addition to cycloaddition product has 

been found to depend upon the metal ions used to chelate the enolate produced 

upon deprotonation. Although the use of DBU has been found to lead to the 

production of a-functionalized a-amino esters as the exclusive product.-' this 

reaction requires a stoichiometric amount of LiBr which provides the chelating 

cation. Also, worth mentioning is the fact that a weaker base such as 

triethylamine produces only the cycloadduct even in the presence of LiBr.~ 

We have previously reported that and are strong bases 

for the deprotonation of activated methyl and methylene groups. Thus, they 

-B. _BL 

( )/ lb hPr hPr 
\ J/ 1c H f-Pr 

Id /-Bu /-Bu 

deprotonate nitroalkanes, acetonitrile, alkyl halides and carboxylic acid esters 

leading to the preparation of nitroalcohols,^"* a,P-unsaturated nitriles,"^ P-
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hydroxy nitriles,"® glutatonitriles,"^ alkenes"® and a,P-unsaturated esters,-^ for 

example. 

We report herein the use of the nonionic proazaphosphatranes la-lc"^ 

and the most recently synthesized member of this family ld^° as catalysts for 

three types of Michael addition reactions. We also report that these catalysts 

effect the hydroalkoxylation of a,3-unsaturated ketones in a superior manner. 

Finally, we report that proazaphosphatranes are superior catalysts for the 

Michael addition of imines derived from a-amino esters, in the absence of any 

metal ion. 

Hydroalkoxylation of a,P -unsaturated compounds 

We observed the first Michael addition reaction promoted by bases of 

type 1 when we attempted to dimerize 3-penten-2-one (2) in the presence of 10 

mol % of la in methanol (Scheme 1). Although none of the expected dimer 

Results and Discussion 

Scheme 1 

MeOH 3a 

3b 



www.manaraa.com

201 

(3a) was observed, we were able to isolate 20-30% of the corresponding P-

methoxy ketone (3b) Scheme 1. When the reaction was repeated with MVK 

(4a) and with 2-cyclohexen-l-one (4b), we were also able to isolate the 

corresponding P-methoxy compounds in 33 and 24 % yield, respectively 

(Scheme 2). Both la and lb afforded similar yields within experimental error. 

However, the protonation of these proazaphosphatranes is incomplete in 

alcohols at room temperamre^''-' and hydroalkoxylation reactions involving 10 

mol % of la or lb at this temperature led to substantial substrate 

oligomerization with only 20-30% of hydroalkoxylation product observed. The 

Scheme 2 O 

O 

4 

MeOH/1 

CH2CHCH2OH/I 

55-70 OC 6a: R = = r2 = Me 
6b: R = H, R^ = Me. R^ = Et 

a; R = R' = H, R- = Me f: R = H, R'  = Me,R- = OEt 

d: R = H, R' = Me, R- = Et 

c: R = R' = R- = Me 

b: R = H, R',R- = (CH2)3 g: R = H, R'= Ph, R- = Me 

h: R = H, R' = COMc, R^ = OMe 

i: R = H, R'= Me,R' = OMe 

e; R = R' = H, R- = OMe 
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remaining reaction product was not recovered upon column chormatography. 

At 50 °C all of proazaphosphatrane (la and lb) is protonated and substantial 

hydromethoxylation of MVK occurred in 10-15 nainutes. However, additional 

hydromethoxylation occurred over an additional 15 minutes to afford the 

corresponding P-methoxy ketone in 65% yield. The less stable base Ic afforded 

a relatively lower yield (52-61%) probably due to its oligomerization. Because 

of its low boiling point (38 °C) MVK was added to the warm reaction mixture 

in a septum-sealed tube whose contents were stirred at 50 °C for 10 min 

followed by stirring at room temperature for an additional 20 min. When 15 

mol % of Id was used as the base, an excellent yield to the desired product was 

obtained with MVK over 24 h (Table 1). Repetition of this reaction with la 

and with lb resulted in the isolation of only trace amounts of the product after 

column chromatography. Higher alcohols such as f-butyl alcohol and 2-

propanol were found to be unable to add to 3-penten-2-one (2), 2-cyclohexen-l-

one (4b) or 4-hexen-3-one (4d) when reacted at 50-70 °C in the presence of up 

to 30 mol % of the proazaphosphtranes la, lb and Id. Allyl alcohol on the 

other hand required reaction at 70 °C for 3 h to afford higher yields of the P-

alkoxy carbonyl compounds using lb and Id (Table 1). Hence, mesityl oxide 

(4c) reacted with allyl alcohol in the presence of 20 mol % of lb and Id at 70 
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°C to afford the corresponding p-alkoxy ketone in 40 and 88% yield, 

respectively in 3 h. On the other hand 4-hexen-3-one (4d) underwent more 

efficient reactions under similar conditions to afford the corresponding P-

alkoxy ketone 6b in 71% and 94% yield in the presence of lb and Id, 

respectively. At the lower temperature of 55 °C, however, when Id was used as 

the base with allyl alcohol, mesityl oxide (4c) reacted efficiently to afford the 

corresponding P-alkoxy ketone in 88% yield. This is probably due to the higher 

solubility of Id and its protonated form which aUows the occurrence of an 

efficient reaction at this relatively low temperature. Both la and lb failed to 

produce any appreciable amount of the desired product under these reaction 

conditions. To the best of our knowledge, 4-allyloxy-4-methylpentan-2-one 

(6a) and its analogues (which are valuable intermediates in ketyl-olefm radical 

cyclization reactions) have been prepared only once.^' This was achieved by 

treating the corresponding alcohols with CaS04, allyl bromide and silver oxide 

for 10 h to afford the desired P-alkoxy ketone in 44% yield. Although the 

inability of 4-phenyl-2-but-3-enone (4g) to react under our conditions 

(employing lb and Id) is disappointing, this result can be rationalized in terms 

of the resonance stability of this substrate which would be interrupted by 

hydroalkoxylation. The reaction of a,P-unsaturated esters [represented by 
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methyl acrylate (4e) and (E)-ethyl crotonate (4f)] with methanol in the presence 

of 10 mol % Id for 2 h undergoes both transesterification and P-methoxylation. 

When reacted with 3.0 equiv of methanol in a solvent such as THF or 

Me2CHCN, 4f afforded a 14:15 mixture of the two products 

MeCH(0Me)CH2C02Et and MeCH(0Me)CH2C02Me in 83% total yield that 

were inseparable on attempted column chromatography. Reducing the amount 

of methanol below 3.0 equiv afforded total yields lower than 50%. Hence, 

hydroxymethoxylation of a,P-unsaturated esters under our conditions is only of 

partial practical utility because of transesterification. Transesterification of 

esters in the presence of bases of type 1 has previously been reported from our 

laboratories.^''' 

Michael addition reaction of nitroalkanes 

When 2-cyclohexenone (4b) was reacted in THF with 1.0 equiv of 

nitromethane in the presence of 0.1 equiv of lb for 1 h, the corresponding 

Scheme 3 

O 
R^R^CHNOa 

4 -68 - 25 °C 
0.15-6h 

7a: MeN02 
7b: n-PrN02 
7c: Me2CHN02 
7d: nitrocyclohexane 

8aa = 4a + 7a Sad = 4a + 7d 8bd = 4b + 7* 
8ca = 4c + 7a Bed = 4e + 7d Bfd = 4f + 7ci 
Sab = 4a + 7b Sbb = 4b + 7b Sfa = 4f + 7a 
Sac = 4a 7c Scd = 4c + 7d Sed = 4e -i- 7 
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Michael adduct was formed in 89% yield. Because an increase in the ratio of 

nitromethane or its use as a solvent led to the formation of nitroaldols from the 

Michael adduct, we investigated several solvents for the reaction. Pertinent 

data for this smdy are shown in Table 2 which shows that isobutyronitrile is a 

far better solvent for the Michael addition of nitromethane. The reaction of 

MVK with nitromethane, however produced several products including 

nitroaldols and double Michael addition products as indicated by 'H NMR 

spectroscopy. This problem was overcome by carrying out the reaction at -68 

°C for 10-15 min. Using the reaction of nitromethane (7a) with mesityl oxide 

(4c) as a model, 0.1 equiv of each of the bases la-Id (data for reactions 

employing la, Ic and Id not shown in Table 2) were found to promote a 

quantitative reaction (99% isolated yield) in Me^CHCN. However, we found 

that the yield of the reaction depends on the solvent (Table 2) with 

isobutyronitrile being more efficient than ether, THF or benzene. The Michael 

addition of higher nitroalkanes, such as 2-nitropropane (7c) and 

nitrocyclohexane (7d), proceeded smoothly in 0.15-6 h.  The superiority of our 

methodology is demonstrated by its ability to promote a quantitative Michael 

addition of nitrocyclohexane (7d) to 2-cyclohexenone (4b), mesityl oxide (4c) 

or ethyl crotonate (4f) in 4-6 h. Likewise, the Michael addition of 2-
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nitropropane (7c) to these unsaturated compounds occurred quantitatively in 

0.5-3 h. Both DBU and TMG have been reported as catalysts for these 

transformations.^' However, reaction times of up to 48 hours are required for 

both bases to afford the Michael adducts in poor to modest yields.^" Thus, the 

proazaphosphatranes serve as superior catalysts for the Michael addition 

reaction of nitroalkanes, especially of higher nitroalkanes. The Michael 

addition of nitrocycloalkanes to a,P -unsaturated esters afford intermediates 

that are useful in the synthesis of spirolactams."^ Triton B has also been used 

for the Michael addition of nitrocyclohexane to a,P-unsaturated esters to afford 

the Michael adducts in 64% yield. Lower yields (70%) and longer reaction 

times (up to 10 h) were also observed in reactions employing Amberlyst A21.'"' 

Our methodology is also superior to a reported process in which 1 -

nitrocyclohexene was reacted with a,P-unsaturated esters in methanol in the 

presence of NaBH4 to afford Michael addition products (e.g. 8ed) in 62-95% 

yield over 24 h.^ In this process, it is worth mentioning that the more 

expensive 1 -nitrocyclohexene was used as the reactant. The work-up in this 

process is also cumbersome.^'' 
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The Michael addition of MejCCHiNCHzCOjMe^*"-^ 

The reaction of this Schiff s base was found to proceed smoothly in the 

presence of 0.1 equiv of lb. When 10 mol % of Id was employed, the 

conversion obtained for the reaction of methyl acrylate with 

MejCCHiNCHoCOoMe was found to be equal to that employing lb within 

experimental error. Although base-catalyzed reactions of this type have been 

reported previously, the ratio of the Michael adduct to cycloaddition product 

formed depended on the presence of a metal ion.~'~ However, bases of type 1 

do not require any metal ion and we observe no evidence of cycloaddition. The 

superiority of bases of type 1 is shown by their ability to induce a clean Michael 

addition of the imine with various a,P-unsaturated compounds in the absence 

of any lithiating agent. Bases known to induce this reaction such as DBU and 

Scheme 4 i 

pi pv N^^^C02Me 
? O MeaCCHrNCHaCOaMe ^ O 

10 mol % lb 
R T 2 h  

4 9 

9a; R = R' = H, = OMe 9e; R = H, R' = R" = Me 

9b: R = H, R', = Me, R- = OMe 9f: R = H, R' = CO.Me, R' = OMe 

9c: R = R'=R- = Me 9g: R = H, R'= Ph, R^ = Me 

9d: R = H, R' ,R-= (^3)3 
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triethylamine all require the presence of LiBr. Chelation has always been cited 

as the possible reason for the higher diastereoselectivities observed in the 

Michael addition reaction of the A^-lithiated azomethine ylides (or lithium 

enolates) produced upon deprotonation of the imines. We too, observe high 

disatereoselecivity with 4-hexen-3-one, 3-penten-2-one and methyl crotonate, 

3-penten-2-one, dimethyl maleate and (E)-4-phenyl-3-buten-2-one despite the 

fact we employ no metal ion. 

Experimental Section 

All the reactions were conducted under nitrogen. Isobutyronitrile 

o 
(Aldrich) was dried over 4A molecular sieves and stored under nitrogen. The 

unsaturated compounds (Aldrich) were used as received. and NMR 

spectra were recorded on a Bruker VRX300 or Bniker DRX400 machine and 

calibrated using TMS as an internal standard. The melting and boiling points of 

the products were obtained in sealed tubes and are uncorrected. The bases 

and were prepared according to previously reported methods 

although la is commercially available (Strem). Me3CCH:NCH2C02Me was 

prepared according to a published procedure." 
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General procedure for the Oxa-Michael addition of alcohols to enones 

The required weight of the proazaphosphatranes was weighed in a small 

test mbe under nitrogen. To this was added 3.0 mL of the alcohol and then the 

colorless solution was placed in an oil bath that has been preheated to the 

required temperature (Table 1) and stirred for 2-3 minutes. The Michael 

acceptor (2.00 mmol) was added in one portion. Stirring was then continued 

for the time periods specified in Table 1. At the end of the reaction time, the 

reaction mixture was added to 20 mL of brine and then extracted with 3x30 mL 

of ether, dried over anhydrous sodium sulfate and the volatiles removed in 

vacuo to afford the crude alkoxy ketones that were purified as detailed below 

(when necessary). Alternatively, the reaction mixture was allowed to cool to 

room temperature and then loaded onto a small silica gel column and eluted 

with 70 mL of 5% methanol in ether. Removal of the volatiles under reduced 

pressure afforded the crude alkoxy ketones that were also purified as detailed 

below (when necessary). The crude alkoxy ketones were purified by elution on 

a silica gel column using ether in hexane. The ratio of ether was increased in 

5% increments and the products eluted at 40% ether in hexane. 
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General procedure for the Michael addition of nitroalkanes to a,P-

unsatuarated compounds 

The base (0.2 mmol) was weighed in a small test tube under nitrogen and 

a small stirring bar added. To this was added 2.0 mL of the appropriate solvent 

(Table 2) followed by 2.1 mmol of the Michael donor. The mixmre was stirred 

for 5 minutes at the temperamre given in Table 2 after which 2.0 mmol of the 

Michael acceptor was added in one portion. After stirring had been continued 

for the required time, the reaction mixture was loaded onto a small silica gel 

column and eluted with 5% MeOH in ether. Removal of the solvent under 

reduced pressure afforded the crude product that was fractionated on a silica gel 

column using an eluent system made up of hexane and EtOAc. 

General Procedure for the Michael addition of MejCCHrNCHjCOiMe to 

unsatuarated compounds 

The base (0.2 mmol) was weighed in a small test tube under nitrogen and 

a small stirring bar was added. To this was added 2.0 mL of isobutyronitrile 

followed by 2.1 mmol of the Michael donor. The mixture was stirred for 5 

minutes at room temperature after which 2.0 mmol of the Michael acceptor was 

added in one portion and stirring continued for 2 h. The reaction mixture was 

then added to 20 mL of ethyl acetate and then the mixture was washed with 10 
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mL of water and 10 mL of brine. The organic layer was dried over anhydrous 

sodium sulfate and the volatiles removed in vacuo to afford the Michael 

adducts. However, these compounds were too labile to be purified by column 

chromatography. This result is in accord with previous reports by Yamamoto*'^ 

et al. and Kanamesa and co-workers."^'' Since the Michael aducts were 

essentially NMR-pure, only the 'H NMR and '^C NMR spectra were recorded. 
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Table 1. The reaction of a,P-unsaturated compounds with alcohols in the 

presence of 1. 

Michael acceptor Michael donor base/ reaction 9c 

mol % conditions yield 

3-penten-2-one (2) MeOH la/10 50 °C; 1 h 78 

MVK (4a) MeOH la/10 50 °C: 0.5 h 65 

2-cyclohexenone (4b) MeOH lb/20 50 °C; 0.5 h 76 

(E)-PhCHCHCOMe (4g) MeOH lb/10 50 "C; 2 h 0 

4-hexen-3-one (4d) MeOH lb/10 50 °C; 0.5 h 96 

4-hexen-3-one (4d) CH.CHCH.OH lb/20 70 °C; 3 h 71 

4-hexen-3-one (4d) MejCOH lb/20 70 °C; 3 h 0 

2-cyclohexenone (4b CHoCHCH.OH lb/20 70 °C; 3 h 58 

mesityl oxide (4c) MeOH lb/10 50 °C; 0.5 h 79 

mesityl oxide (4c) Me.CHOH lb/20 70 °C; 3 h 0 

mesityl oxide (4c) CH.CHCH.OH lb/20 70 °C; 3 h 40 

MVK (4a) MeOH lc/20 50 °C; 0.5 h 61 

mesityl oxide (4c) CH.CHCH.OH ld/20 55 °C; 7 h 89 

mesityl oxide (4c) CH.CHCH.OH ld/20 70 °C; 3 h 88 

4-hexen-3-one (4d) CH.CHCH.OH ld/20 70 °C; 3 h 94 

mesityl oxide (4c) Me^CHOH ld/20 70 °C; 3 h 0 

MVK (4a) MeOH ld/10 35 °C; 24 h 62 

MVK (4a) MeOH ld/15 35 °C; 24 h 93 

2-cyclohexenone (4b MeOH ld/10 50 °C; 3 h 89 
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Table 2. The Michael addition of nitroalkanes to a,P-unsaturated compounds 

in the presence of 1. 

Michael acceptor Michael donor conditions 

baseV °C / h. yield 

mesityl oxide (4c) MeNOo (7a) lb/RT/0.5 99 

mesityl oxide (4c) MeNO." (7a) lb/RT/0.5 95 

mesityl oxide(4c) MeNO."^ (7a) lb/RT/0.5 91 

mesityl oxide (4c) MeNO." (7a) lb/RT/0.5 92 

MVK (4a) MeN02 (7a) lb/-68/0.I5 78 

MVK (4a) n-PrN02 (7b) lb/-68/0.15 81 

MVK (4a) MeoCHNO. (7c) lb/RT/0.25 99 

MVK (4a) nitrocyclohexane (7d) lb/RT/0.25 93 

2-cyclohexenone (4b) Me.CHNOo (7c) lb/RT/0.5 99 

CH^rCHCOsMe (4e) nitrocyclohexane (7d) lb/RT/4 100 

(£)-ethyl crotonate (4f) nitrocyclohexane (7d) lb/RT/4 100 

2-cyclohexenone (4b) /i-PrNO. (7b) lb/-68/0.25 71 

(£)-ethyl crotonate (4f) MeN02 (7a) lb/-68/0.25 99 

2-cyclohexenone (4b) nitrocyclohexane (7d) lb/RT/1 99 

mesityl oxide (4c) nitrocyclohexane (7d) ld/RT/1 95" 

MVK (4a) nitrocyclohexane (7d) ld/RT/0.25 99 

CH2:CHC02Me (4e) nitrocyclohexane (7d) ldyTlT/1 99 

(£)-ethyl crotonate (4f) nitrocyclohexane (7d) ld/RT/1 99 

mesityl oxide (4c) Me2CHN02 (7c) ld/RT/0.33 99 
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Table 2 (continued). 

''The amount of base used was 10 mol % in isobutyronitrile unless stated 

otherwise. The solvent was THF. The solvent was benzene. ''The solvent 

was ether. The amount of Id used was 20 mol %. 
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Table 3. The Michael addition of McjCCHiNCHjCO^Me in the presence of 

Michael acceptor yield (anti:syny 

methyl crotonate (4i) 76(9:1) 

methyl acrylate (4e) 72 

mesityl oxide (4c) 86 

2-cyclohexenone (4b) 97 (single) 

3-penten-2-one(2) 85(7:1) 

dimethyl maleate(4h) 94 (single) 

(£)-4-phenyl-3-buten-2-one (4g) 91 (single) 

""Determined by 'H NMR integration based on a comparison with literature 

spectra." 
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CHAPTER 9 

P(RNCH2CH2)3N-CATALYZEDDIASTERE0SELECTIVE 

SYNTHESIS OF OXAZOLIDINES 

A paper to be submitted to the Journal of Organic Chemistry 

Philip Kisanga,'^'' Palanichamy Ilankumaran'^ and John G. Verkade'^'^ 

Abstract 

We report herein a diastereoselective synthesis of oxazolidines in a 

reaction catalyzed by 5-30% of the strong nonionic bases of the type P(/-

PrNCH2CH2)3N. The formation of the oxazolidines proceed with high 

diastereoselectivity (>95:5) with the trans isomer as the major product. 

Introduction 

Oxazolidines are versatile intermediates in the synthesis of various P-

substituted serines' which are of significant importance because of their utility 

in the synthesis of various antibiotics." Thus, the serine moiety constitutes the 

primary core structure of various antibiotics, such as hypeptin"'' and 

leucinostatin.^ Ethyl isocyanoacetate, a synthon for the formation of 

' Graduate student and University FYofessor respectively. Department of Chemistry, Iowa State University. 
^ Primary researcher and author. 
" Postdoctoral research associate. Depanment of Chemistry. Iowa State University. 

Author for correspondence. 
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oxazolidines is relatively acidic and can be deprotonated by a variety of bases 

for coupling with aldehydes to afford the oxazolidines. The lack of 

diastereoselectivity of such reactions has rendered this synthetic route of limited 

utility. Among catalysts that have been reported to effect the conversion of 

aldehydes and ethyl isocyanoacetate to oxazolidines are ZnCU/ ZnCL/CuCl 

system,^ NaCN/EtOH,® and Cu^O.' The copper(I) oxide-catalyzed process 

leads to the formation of varying ratios (1.5:1.0 - 0.4:1.0) of diastereomers^ and 

this catalyst also induces migration of the imine double bond with the resultant 

formation of two tautomers giving a complex mixture of products.^ 

Furthermore, the presence of a,P-unsamration leads to Michael addition, 

rendering this method of very limited practical utility. Although the 

NaCN/EtOH system affords the oxazolidines in high yields,^ its inability to 

induce excellent distareoselectivity in aldehydes other than phenyl acetaldehyde 

has limited its use.^ The ZnCU/CuCl catalyzed process also leads to the 

formation of diastereomeric mixtures (7:1-1:1, trans:cis).^ As a result of these 

poor selectivities, alternative routes to P-hydroxy a-amino acids have been 

developed,' among which are the condensation of glycine with aldehydes on 

Ni(II) complexes'® and an electrophilic amination reaction."' Since nickel is 

highly toxic, this methodology is not attractive in an industrial setting. The 
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elctrophilic amination process requires 2.5-4.2 equiv of LDA and also 1.5 equiv 

of di-z-butylazodicarboxylate.''' Moreover, the diastereoselectivity in this 

reaction ranges from 94:6-75:25 (trans:cis).^^ Enzyme systems'"^'' have also 

been investigated for the synthesis of an intermediate oxazolidine used in the 

synthesis of thiamphenicol and florfenicol.'°^ 

The proazaphosphatranes la and lb" synthesized first in our laboratories 

have recently attracted interest as versatile catalysts and reagents for various 

useful transformations such as the isomerization of double bounds,'" alcohol 

la R = Me 
1b R = /-Pr 

silylation,'^ transesterification,'^ the synthesis of ^-hydroxy nitriles,'^ a,P-

unsaturated esters,'^ a,p-unsaturated nitriles,'^ homoallylic alcohols,'® P-

nitroalkanols,'^ glutaronitriles,-° a,a-dicyanoalkenes,-' benzofurans," 

coumarins'^ and alkenes via dehydrohalogenation;^ and the trimerization of 

isocyanates.^"* A proazaphosphatrane has also been used to prepare a Wittig 

ylide^^"* and to facilitate Wittig"^'' and Stille reactions.^^ We have recently found 

that la and lb can be used stoichiometricaliy to synthesize a,P-unsaturated 

esters with excellent selectivities for the E-isomer. We therefore decided to 
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explore additional reactions in which stereoselectivity is an issue. Since 

oxazolidines are versatile intermediates for the synthesis of serine derivatives, 

which in turn could open a route to interesting urmatural amino acids, we 

decided to investigate the possibility of inducing a diastereoselective reaction 

between aldehydes and ethyl isocyanoacetate. 

We report here the use of catalytic amounts of the proazaphosphatranes 

lb as a catalyst in the synthesis of oxazolidine ethyl carboxylates with high 

diastereoselectivity. 

Results and Discussion 

The reaction of benzaldehyde (2a) with isocyanoacetate 3 in THF in the 

presence of 20 mol % of lb at room temperature for 1 h afforded a product 

mixture that contained the fra/25-oxazoUdine as the major product as determined 

by 'H NMR spectroscopy. However, the reaction was not clean and led to the 

formation of other uncharacterized side products. No significant improvement 

was observed upon reducing the temperature to -68 °C or raising the 

temperature to 40 °C. However, upon changing the solvent to isobutyronitrile 

(a solvent that we have previously found to induce clean reactions),'^ the 

desired oxazolidine ethyl carboxylate 4a was isolated in 95% yield. Both la 

and lb afforded similar yields within experimental error (data not shown in 
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Table 1). Comparison of both the and NMR data of this product (4a) to 

literature data^ revealed that the frawj-oxazolidine ethyl carboxylate was the 

only product of the reaction. Attempted reaction of p-chlorobenzaldehyde and 

p-fluorobenzaldehyde in isobutyronitrile did not afford clean reactions. 

1 
R/ArCHO + CNCHzCOOEt 

5-30 mol % i 
^ COaEt 

2 3 * 

a : AT = Ph g: Ar = p-MeS02QH4 m: R = E-PhCH=CH 

b: AT = /7-FC6H4 h: Ar = 2,5-diMeC6H3 n: R = n-Pr 

c: Ar = p-ClC^H^ i: Ar = 2,5-diOMeC6H3 o: R = o-MeOC^Hj 

d: Ar = P-NCC6H4 j: R = /-Pr p: Ar = 

e: Ar =/?-0,NQH4 k:R=Me3C q: A r =  

f: Ar = p-MeOCfiH^ I: R = CH3(CH2)5 r; Ar = 

However, by reducing the temperature to -68 °C, aromatic aldehydes bearing 

electron withdrawing groups (2d, 2e, and 2g) and aliphatic aldehydes (2j-2n) 

reacted to afford fra«5-oxazolidines ethyl carboxylates as the only products. On 

the other hand, aromatic aldehydes bearing electron donating groups (2h, 2i and 

2o-2r) required room temperatures to afford similar yields (Table 1). Excellent 

yields were obtained by reacting p-fluorobenzaldehyde (2b) and p-
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chlorobenzaldehyde (2c) in the presence of 20 mol % of lb at -5 and -20 °C 

repectively. The oxazolidine ethyl carboxylate 4g was obtained in 97% yield 

which is of significance because it has previously been used as an intermediate 

in the synthesis of thiamphenicol (5a) and florfenicol (5b). 

Since oxazolidine ethyl carboxylates and their hydrolysis products, i.e., 

P-hydroxy-a-amino acids, serve as intermediates to chiral compounds, such as 

the broad spectrum antibiotics thiamphenicol (5a) and florfenicol (5b),we 

attempted to synthesize a chiral oxazolidine. We have previously reported the 

synthesis of (R)-6,^^ a chiral auxiliary bearing the isocyanide functionality. 

However, the synthesis was achieved in six steps and it bears the oxazolidinone 

functionality that requires a two-step procedure for removal."^ We therefore 

investigated the synthesis of a chiral isocyanide possessing an easily removable 

chiral auxiliary. The menthol group has recently emerged as an easily cleaved 

chiral auxiliary.'® The incorporation of this group as the chiral auxiliary in the 

isocyanide (L)-7 is shown in Scheme 1. The commercially available chloro 

compound 8 was reacted with sodium azide in DMF at 50 °C for 20 h. 

NHCOCHCI2 

o o 

''CHaPh 

(R)-6 5a R = OH 
5b R = F (L)-7 
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Scheme 1 

oX^' DMF 50 °C 

20 h 

NaNs 
*^3 2. HCOaEt, 48 h 

1. Ha/Pd/C, 30h 

A^NHCHO 

8 9 10 

1. EtaN, 0°C 

2. CCI3COCCI3 
0 ->RT18h 

Upon work-up and purification, the azide 9 that was obtained in 81% yield was 

converted to the formate 10 in a one pot reaction in which 9 was reduced with 

hydrogen on Pd/C for 30 h in ethyl formate followed by stirring for 48 h. The 

formate 10, obtained in 99% yield, was further reacted with the phosgene 

equivalent CCI3COCCI3 to afford the target isocyanide (L)-7 in 73% yield. 

Thus, isocyanide (L)-7 was obtained in three steps in 59% overall yield. 

With the isocyanide (L)-7 in hand, an attempt was made to prepare a 

chiral oxazolidine menthyl carboxylate by coupling (L)-7 with benzaldehyde. 

Reactions in the presence of 20 mol % of lb attempted in THF for 2 h at room 

temperature led to the formation of complex reaction mixtures. When the 

reaction was repeated in isobutyronitrile under conditions similar to that 

employing ethyl isocyanoacetate (Table 1), the reaction was incomplete. 

Although an increase in the amount of lb to 30 mol % led to a complete 
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conversion to the desired rran^-oxazolidine 11 (Scheme 2), the observed 

diastereoselctivity was only 7:4. When the amount of the base was reduced to 5 

Scheme 2 

O 
U 30mol%1b 

+ PhCHO 
MeaCHCN 

2a 

(L)-7 

mol % and the reaction run overnight in an attempt to induce higher 

diastereoselectivity, a complex reaction mixture was obtained. The reaction of 

(L)-7 with pivalaldehyde was equally successful at -68 °C employing 20 mol 9c 

of lb to afford a diastereoselectivity of 5:3 (Scheme 3) in 2 h. 

Scheme 3 

30 mol % lb 
NC + MegCCHO 

MeaCHCN O y 
2k ^ Uo 

« - x  

Although the diastereoselectivities observed here are disappointing, 41 

was converted into the serine derivative 13 by a slight modification of a 

reported procedure (Scheme 4)."' 
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Scheme 4 

N 
HCI/MeOH 

50 °C. 2 h 
NH2 

EtOaC EtOaC 
41 13 

Experimental Section. 

All reactions were conducted under nitrogen. The bases la"'' and lb'"' were 

prepared according to previously reported procedures. and '^C NMR spectra 

were recorded on a Bniker VRX300 or Bniker DRX400 machine and calibrated 

using TMS as an internal standard. 

General Method for the Preparation of Oxazolidine Ethyl Carboxyiates 

In a round-bottomed flask was weighed the desired amount of lb (Table 

1) under nitrogen. To this was added 3.0 mL of isobutyronitrile, followed by 

2.0 mmol of ethyl isocyanoacetate. The reaction mixture was placed in a 

constant temperamre bath adjusted to the suitable temperature (Table 1) with 

continuous stirring for 5 min. To this solution was added 2.0 mmol of the 

aldehyde and then the solution stirred at this temperature for 15 more minutes 

after which it was allowed to stir at room temperamre for 1 h. The reaction 

mixture was loaded onto a small silica gel column and eluted with ethyl ether. 

Removal of the solvent in vacuo afforded a crude mixture that was purified by 

eluting on a silica gel column with ether/hexane. The ratio of ether was 
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increasd in 5 % increments. The oxazolidines eluted with 40% ether in hexane. 

The more polar oxazolidines 4b-4e and 4g were purified by eluting with ethyl 

acetate in hexane and eluted at 40% ethyl acetate in hexane. 

Preparation of Azide 9 

A mixture of 11.6 g (50 mmol) of the chloro compound 8 and 13.0 g (200 

mmol) of sodium azide were weighed under nitrogen in a round-bottomed flask. 

To this mixture was added 30 mL of DMF and the flask was connected to a 

water condenser. The reaction mixture was then warmed at 50 °C for 20 h. At 

the end of this, the reaction mixture was cooled to room temperamre and the 

reaction mixture dissolved in 150 mL of diethyl ether. This solution was then 

washed with 3.x 100 mL of water. The organic layer was washed with brine and 

dried over anhydrous sodium sulfate. Removal of the solvent in vacuo 

afforded the azide 9 that was purified by flush chromatography using 20% ethyl 

acetate in hexane to afford 9.70 g (81% yield) of the pure azide. 

Synthesis of Formate 10 

To 2.00 g (8.83 mmol) of the azide 9 dissolved in 10 mL of ethyl formate 

was added 200 mg of Pd/C. Hydrogen was bubbled through the reaction 

mixture for 30 h followed by stirring at room temperamre for 48 more hours. 
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The solid particles were then filtered from the reaction mixture and then the 

excess solvent was removed under reduced pressure to afford 2.00 g (99% 

yield) of the formate 10 which was found to be essentially pure by both 'H and 

'^C NMR spectroscopic analysis. 

Synthesis of the isocyanide (L)-7 

In a small round-bottomed flask was weighed under nitrogen 1.2 g (5.04 

mmol) of the formate 10. To this was added 5 mL of methylene chloride and 

then 2.7 mL (20 nmiol) of triethylamine. The reaction mixture was cooled to 0 

°C followed by dropwise addition of 2 mL (594 nmiol) of hexachloroacetone. 

The temperature of the reaction mixture was allowed to warm to room 

temperature while the mixmre was stirred for 18 h. The reaction mixture was 

then filtered to remove triethylamine hydrochloride. The solvent was removed 

under reduced pressure and the crude product was purified by flush 

chromatography on silica gel using 20% ethyl acetate in hexane to afford 818 

mg (73% yield) of the target isocyanide. 
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Preparation of P-hydroxy-a-amino ester 13. 

To 5 mL of concentrated HCl in 5 mL of dry methanol in a round-

bottomed flask was added 227 mg (0.10 mmol) of the oxazolidine ethyl 

carboxylate 41 dissolved in 5 mL of the same solvent. The reaction flask was 

connected to a water condenser and the reaction mixture was heated at 50 °C for 

2 h and at the end of that time the reaction mixture was allowed to cool to room 

temperature. The reaction mixture was then quenched with 10 mL of 50% 

sodium hydroxide solution diluted to 20 mL with water. The reaction mixture 

was extracted with 3x30 mL of ethyl acetate. The organic fractions were 

combined, dried over anhydrous sodium sulfate and the solvent was removed 

under reduced pressure to afford a crude product that was eluted on a silica gel 

column with 100% ethyl acetate to afford 154 mg (71% yield) of the P-

hydroxy-a-amino ester 13. 
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Table 1. Reaction of aldehydes with ethyl isocyanoacetate in isobutyronitrile. 

substrate base (T°C/t % product 

/ratio min) yield 

benzaldehyde (2a) lb/0.20 25/60 95 

p-fluorobenzaldehyde (2b) lb/0.20 -5/60 98 

p-chlorobenzaldehyde (2c) lb/0.20 -20 /60 94 

/7-cyanobenzaldehyde (2d) lb/0.30 -78/75 99 

p-nitrobenzaldehyde (2e) lb/0.30 -78/75 94 

/7-anisaldehyde (2f) lb/0.20 25/120 78 

p-methylsulfonylbenzaldehyde (2g) lb/0.30 -78/75 97 

2,5-diniethylbenzaldehyde (2h) lb/0.30 25/90 93 

2,5-dimethoxybenzaldehyde (2i) lb/0.30 25/90 91 

isobutyraldehyde (2j) lb/0.05 -78/60 80 

pivalaldehyde (2k) lb/0.05 -78/60 67 

A2-heptaldehyde (21) lb/0.05 -78/60 71 

(£)-cinnamaldehyde (2m) lb/0.2 -78/75 68 

/7-butyraldehyde (2n) lb/0.05 -78/60 88 

<7-anisaldehyde (2o) lb/0.20 25/60 75 

2-naphthaldehyde (2p) lb/0.20 25/60 97 

thiophene carboxaldehyde (2q) lb/0.20 25/60 89 

furfuraldehyde (2r) lb/0.20 25/60 93 
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CHAPTER 10 

GENERAL CONCLUSIONS 

This study has demonstrated that proazaphosphatranes are likely to 

become widely used catalysts/reagents. This has been demonstrated in six 

applications: synthesis of glutaronitriles, P-hydroxy nitriles, 3-nitroalkanols, 

a,p-unsamrated esters, oxazolidines and three important Michael addition 

reactions. The observation that either MgBr^ or MgSOj may act as carbonyl 

activators in the presence of proazaphosphatranes may be relevant in further 

applications such as the preparation of a,P-unsaturated nitriles from ketones, a 

transformation that has not yet been achieved in a clean fashion using these 

reagents. Other Lewis acids may also be found to be compatible with the 

proazaphosphatrane system. Additional potential applications include the 

synthesis of P-hydroxy esters and the synthesis of pyrans, indoles and 

quinolines. The wide range of applications of proazaphosphatranes discussed 

herein coupled with the preparation of variously substituted 

proazaphosphatranes by the methods described in this dissertation can 

potentially increase the marketability of these bases since the starting aldehydes 

are inexpensive and might reduce the price of a Verkade superbase to about 

50% of the present market price for P(MeNCH2CH2)3N ($238.00/ g). However, 
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this also depends upon future studies that would lead to further discoveries of 

new applications of these compounds in useful organic transformations. 
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